
Final Project Report

Climber Timer

Team 16

Supervisor - Dr. Giordano Scarciotti

Alexander Prescott - 01191642
Archit Sharma - 01199766
Benjamin Biggs - 01064601
Bonne van Oordt - 01242762
Tamara Elmani - 01081131
Thomas Poskitt - 01059987
Tomasz Bialas - 01205145

Contents

1 Abstract 4

2 Introduction 4

3 Project Management 4

4 Design Specification 5

5 Development Process 6

6 Technical Design 7
6.1 High Level Design . 7
6.2 Hardware . 8

6.2.1 Overview . 8
6.2.2 RFID Tag . 8
6.2.3 Sleep Mode . 9
6.2.4 UDP Packet Transmission . 10
6.2.5 Timing . 11
6.2.6 PCB . 11
6.2.7 Enclosure . 12

6.3 Testing . 13
6.4 Software . 14

6.4.1 Overview . 14
6.4.2 Database . 15
6.4.3 UDP Receiver . 16
6.4.4 Website . 17

6.5 Development Costs . 21

7 Evaluation 21

8 Business Plan 21

9 Future Development 22
9.1 Hardware . 22

9.1.1 Power Consumption . 22
9.1.2 Size & Enclosure . 22
9.1.3 Timing Improvements . 23

9.2 Software . 23
9.2.1 Website Security . 23
9.2.2 Website Aesthetics . 23

10 References 24

Appendices 25

A Glossary 25

B Gantt Chart 26

C Meeting Minutes 27
C.1 Meeting: 13/10/2017 . 27
C.2 Meeting: 20/10/2017 . 27
C.3 Meeting: 03/11/2017 . 28
C.4 Meeting: 10/11/2017 . 28
C.5 Meeting: 24/11/2017 . 29
C.6 Meeting: 01/12/2017 . 29

Climber Timer Team 16

C.7 Meeting: 08/12/2017 . 30
C.8 Meeting: 19/01/2018 . 31
C.9 Meeting: 26/01/2018 . 31
C.10 Meeting: 09/02/2018 . 31
C.11 Meeting: 23/02/2018 . 32
C.12 Meeting: 09/03/2018 . 32
C.13 Meeting: 14/03/2018 . 32

D Project Development Costs 33

E Prototype Costs 34

F Hardware Code Resources 35
F.1 ESP-12 Code . 35
F.2 ESP Timer Testing . 40
F.3 Oscilloscope Power Consumption Data . 41

G PCB Development 42
G.1 Schematic . 42
G.2 Top Layer . 43
G.3 Bottom Layer . 44
G.4 Physical PCB . 45

H Enclosure Development 46
H.1 1st Iteration . 46
H.2 2nd Iteration . 47
H.3 Closed Render . 48
H.4 Exploded Render . 49
H.5 Enclosure Base Drawing . 50
H.6 Enclosure Lid Drawing . 51
H.7 Final Form . 52

I UDP Receiver Code 53

J UDP Receiver Tests 57

K Website Images 58
K.1 Login Page . 58
K.2 Sign Up Page . 59
K.3 User Data Page . 60
K.4 Connect Wristband . 61
K.5 Problem Data Page . 62
K.6 Settings Page . 62

L Website Test Table 63

M PHP Code 64
M.1 homepage.php . 64
M.2 signup.php . 66
M.3 userdata.php . 68
M.4 connect.php . 70
M.5 connectresult.php . 72
M.6 problemdata.php . 73
M.7 settings.php . 81

3

Climber Timer Team 16

1 Abstract

There is currently no commercially available automated system to log what problems a climber completes
or how quickly they are completed. The project attempts to solve this problem by creating a network of
RFID tags that a climber can scan using a rechargeable, active RFID wristband at the start and end of
each problem. The wristband sends data to the database server via Wi-Fi, which can then be accessed
by the climber via a website.

The final product can easily be retrofitted to an existing climbing wall, with minimal changes to the in-
frastructure of the centre. The wristband has a battery life of approximately 20 hours and is rechargeable
via a micro-USB port. It is also simple to use and implement, making it an attractive option for climbing
centres looking to improve the user experience.

The prototype was tested in a variety of scenarios to observe its performance. It was found that it
functioned appropriately given the goals of the project. From these tests, it was concluded that a project
of this scope could be successful if it was released within the indoor climbing market.

Further improvements to optimise performance and functionality are possible but the prototype has
proved the projects potential for success.

2 Introduction

Using technology to advance sport achievement has rapidly become embedded in today’s society. Data
analytics have been applied to a variety of sports to allow athletes to track and improve their performance.
The market for wearable devices and applications used for developing and coaching athletes is fast-
growing, with the sports coaching platform technology market predicted to grow to $864 million by
2021, a steep increase from its value of $49 million in 2014.[1]

Bouldering is a form of rock climbing performed on small rock formations or artificial rock walls in a
climbing centre without the assistance of ropes or harnesses. Within one of these climbing centres, there
are a multitude of unique problems on each wall that vary in difficulty and in the skills required to
complete the route. There is currently no automated way to keep track of what problems have been
completed or the time taken for a climber to ascend. The aim of this project is to create a wearable
device that logs activities in a climbing centre with the extension of providing a community platform for
users to discuss how they approached the problem and compete for ascent times.

There are a few other devices or applications currently on the market that serve a similar purpose. In
terms of tracking activities in a climbing centre, there are solutions such as the Climbax[2] wristband,
the Whipper tag[3] and a couple of basic tracking apps that do not log any activities automatically. The
unique selling point of the Climber Timer stems from its ability to automatically log activities whilst
differentiating between individual problems on a climbing wall, and providing problem-specific data to
users.

This report will revisit the rationale for the final design of the product, outline any changes made since
the Preliminary Concepts Report, demonstrate the steps the group has taken in order to develop a
working prototype, testing procedures carried out and how this report can be followed for the benefit of
any future work.

3 Project Management

The team was split into two broad subgroups: software and hardware. The hardware subgroup focused
on the physical wristband circuitry, connectivity via RFID and Wi-Fi and accurate timing with NTP.
The software subgroup focused on the server and how to receive and store data from the wristband into
the database, as well as facilitating autonomous data transfer from the database to a website that users
can access.

4

Climber Timer Team 16

A Gantt chart (appendix B) was drawn up at the start of the project to give milestones to aim for as
the project progressed.

As shown in the Gantt Chart, work on both hardware and software was completed in parallel, which
is reflected by the groups meeting schedule. Prior to the division of the group, short meetings were
held on a weekly basis in a lab environment. After the division of the group, every second meeting was
replaced with a subgroup meeting. General meetings served to keep both subgroups working cohesively
to ensure that future interfacing would not be an issue. All minutes can be found in appendix C. Group
communication was done via Slack and file sharing was done via a shared Google Drive.

4 Design Specification

The interim report specified the important design criteria from the product design specification, but
these have since been tweaked and appropriately justified after further deliberation and early prototyping
findings. The product had to satisfy the following criteria:

Performance: the product should be able to record: whether a problem has been completed, number of
attempts taken to complete a problem, and time taken for a successful ascent. The product should also
provide further information on the problems: grade, setter, set date and estimated strip date. This data
would have to be input manually as they cannot be determined automatically. Since this information
is provided by the centre, the product would still be convenient and automated for the user. Data
that has been updated should be immediately available to the user via an appropriate, user-friendly
interface.

Environment: the product is to be used within indoor climbing centres and should therefore be able to
function in high humidity and chalk concentration. Components of the device should be appropriately
encased if they are susceptible to these conditions. The product must be able to withstand scrapes and
knocks as a result of climbing and falling. The functional temperature would generally be around room
temperature, but depending on the location of the climbing centre and the time of year, an appropriate
temperature range would be -10°C to 40°C.

Operating time: in the case of battery powered components, the minimum battery life is the maximum
duration of a climbing session which is approximately 4 hours. A more realistic goal is a lifespan that
takes into account the possibility of consecutive climbing sessions, without the opportunity to recharge.
Therefore an operating time of 16 hours would be more practical, ensuring the availability of the devices
during busy days.

Target product cost: the closest comparable products/technology have a retail price of approximately
£140[3] per device. However, the product that is being created will not be a stand alone product, it is a
system that will be installed in climbing centres. The wristbands would then be rented out to customers.
The price per wristband will likely be cheap, but the system cost will be higher. An appropriate price
for a single wristband would be £20, with a fee of £200 for the rest of the system.

Size, weight and ergonomics: an important criterion is that the product does not interfere with the
climbing experience and capabilities of the user. It is also vital that the system is not inconvenient for
the climbing centre to fit to a problem. This means that wearables should be lightweight and small.
A decent reference is a large wristwatch, with dimensions and weight limited to approximately 55 x
55 x 20 mm and 120 g. For this product, lighter and smaller is better. The wall-mounted tags should
also be small and in particular, not protrude from the wall, to avoid accidental damage or interference.
With a depth of no more than 15 mm, the height and width are less important but should be limited
to the size of a small hold: 50 x 60 mm. Considering ergonomics, wearables must: be comfortable and
unobtrusive, not limit the movement of hands or feet and be secure yet easy to remove. Notably, the
product must be constructed from skin-friendly and shock-resistant material where relevant with no
sharp edges. Wearables and other parts should not contain user-operable controls (switches, buttons,
etc), but rather work automatically using an intuitive method. The system should have audio or haptic
feedback to inform the user of a successful connection (to a tag).

5

Climber Timer Team 16

Safety: batteries must be suitably encased and current-limited to prevent burns to skin in the case of a
malfunction. The structural integrity of the holds and wall must not be compromised. No parts may rest
on the crash mats as this would compromise the safety of a climber should they fall. For the same reason,
any potentially harmful components worn by the user must be encased in resistant material.

5 Development Process

Once the problem the group was trying to solve was identified and characterised, five solutions were
drawn up, as detailed in the Preliminary Concepts report. A brief outline of each of these solutions and
the rationale behind the final design choice can be found below.

In order to fully understand the design specifications and important features of a device that could log
activities in a climbing centre, the group conducted practical market research at two climbing centres,
Westway and Vauxwall. This research included speaking to the operations managers about the potential
of the product from a business point of view.

“The indoor climbing market is currently growing at an ever increasing rate. With the number
of climbing centres in London alone exceeding 15, there is definitely room for a product that
performs these functions.”

– Jonny White, Westway Operations Manager

Active wristband, passive wall tags: RFID passive tags attached to climbing wall next to start and
finishing holds for climbers to tap upon start and completion. This was the chosen solution.

Passive wristband, active wall tags: RFID active wall-mounted tags next to start and finishing
holds for climber to tap upon start and completion. Implementing an active wall tag in a climbing centre
may prove to be problematic as it needs to be connected to constant power supply. This would make it
difficult to rearrange the tags when the problems are changed.

Camera: real time tracking of climbers during their ascent using a device with a camera. This solution
would have been infeasible given the time frame for this project and the complexity of processing required.
It also wouldn’t have served as a practical solution for a climbing centre due to space issues and high
added expense.

Wearable smart tag: a device that uses various sensors to track the movement and position of the
climber as the problem is completed. Upon further research into the metrics required for this solution,
it was clear that it would be very difficult to measure problem specific data, especially given that there
would be no way to know when the problem set was complete. Very accurate sensors and comprehensive
algorithms would be required to estimate the user position to a sufficient degree of accuracy.

Smart holds: all necessary components are contained within holds and attached at the top and bottom
of each problem. Data would be logged with respect to the time between the climber scanning their
finger at the bottom and the top of the problem. This cannot be retrofitted onto an existing wall as
the climbing centre would need to buy specific holds that could only function as either first or the last
hold of a problem. This would be inconvenient for climbing centres as well as expensive due to the
cost of producing these smart holds and number of holds required. Fingerprint scanning would also be
unreliable due to the nature of the sport itself, as climbers’ hands often retain frequent ‘wear and tear’,
get very sweaty and covered in chalk.

In order to further assist in deciding which concept best fulfils the main criteria outlined in previous
reports, a concept selection matrix was created, as shown in figure 1. The main deciding factors for
choosing the ’active wristband, passive wall tags’ solution were the feasibility given the time available
for the project and the flexibility it would give to climbing centres when updating problems on the
wall.

6

Climber Timer Team 16

Active
Wristband

Passive
Wristband

Camera Smart
Tag

Smart
Holds

Accurately record
problem specific data

+ + s - +

Ease of information
transfer and display

s s s s s

Low latency updates of
data

s s - s s

Feasibility of design
implementation

+ s - + -

Environment s s - s s
Power consumption + - s + -

Battery life s s s s +
Life in service + + s s s

Overall solution cost + s - + -
Size + + - + -

Weight + + s + -
Minimal user controls s s + s +

Shockproof + + - + s
Safety s s s s s
Total 8 4 -5 5 -2

Figure 1: Concept selection matrix

6 Technical Design

6.1 High Level Design

The project was broken down into two main systems: hardware and software. The hardware refers to
the wristband and RFID tags, while the software system encompasses the database and the website.
The software and hardware systems can be broken down into several subsystems as shown in figure 2
and 3.

Figure 2: High level design - software

7

Climber Timer Team 16

Figure 3: High level design - hardware

6.2 Hardware

6.2.1 Overview

A prototype wristband needed to be manufactured to follow the specifications outlined in the PDS. This
meant that it had to record the ascent time to the nearest 100 ms and then upload this information as
soon as possible. It was also desirable that the wristband would notify the climber of a successful scan
with haptic or auditory feedback. For the convenience of the climber, the wristband had to last for at
least 4 hours (approximate time of a long climbing session) on a single charge. Ideally the wristband
could last 16 hours on a single charge so it would only need one charge daily which would be convenient
for the climbing centre. For added convenience, the device needed to be rechargeable from a standard
micro USB cable. Most importantly, the case had to be unobtrusive to the climber and not provide any
significant handicap.

6.2.2 RFID Tag

To identify a passive tag attached to the climbing wall, the wristband requires a low-power RFID module.
The MFRC522 development board was chosen to implement this because of its low cost, availability and
its open source libraries. Once work had started on this board, it was discovered that the development
board was hard wired to use SPI, not I2C despite the MFRC522 being able to do both. Using I2C would
have been more convenient but SPI worked adequately.

Figure 4: MFRC522 development board Figure 5: ESP-12

As Wi-Fi has been chosen as the mode of communication of the wristband to the rest of the data

8

Climber Timer Team 16

processing infrastructure, a microcontroller with integrated Wi-Fi functionality was chosen for simplicity
of implementation and small physical size. The ESP-12 (figure 5), an ESP8266 microcontroller-based
module, was selected for: its small form factor, integrated Wi-Fi antenna, software library compatibility
with the Arduino ecosystem, community support due to its popularity and relatively low cost.

The MFRC522 is advertised as having “flexible interrupt modes”[4]. However, it seemed impossible for
the module to send an interrupt to the ESP-12 to wake it from sleep mode. This was disappointing
because the initial design relied on using the ESP-12 microcontroller in deep sleep mode which uses very
little power. It would only awaken when a tag was scanned. This however, was not possible.

6.2.3 Sleep Mode

As the wristband is a wearable, battery life is a critical characteristic of the system. Therefore power
saving methods need implementing. The ESP-12 offers several power saving modes[5]:

Deep sleep: the microcontroller core, the system clock and the RF modem are powered down but the
RTC clock remains active. This mode can only be exited through a reset, which can be triggered through
an RTC timer. The current draw in this mode is approximately 1 µA.

Light sleep: the microcontroller core, the system clock and the RF modem are powered down. However,
any wakeup events (including RF baseband/Wi-Fi media access, the RTC timer or external interrupts
on GPIO) can wake up the microcontroller. Current draw in this mode is approximately 1 mA.

Modem sleep: only the RF modem is powered down. Current draw in this mode is approximately
15 mA.

Initially, the RFID reader was expected to issue an interrupt request when reading an RFID tag, waking
up the microcontroller to read the data. However, further testing showed that the RFID IC does not
issue IRQ signals when the main communication interface is not activated, which meant modem sleep
could not be implemented.

Instead, a polling method was established by putting the system to sleep and waking it up periodically.
A standard card polling sequence was timed to last 30 ms as seen in figure 6. A sleep frequency of 10 Hz
was then chosen to match the 0.1 s timing accuracy requirement of the PDS, giving a wakeup cycle of
30 ms and a sleep cycle of 70 ms.

Figure 6: SPI transaction

Finally, in order to maximise the amount of power saved, light sleep with the modem disabled was chosen
as it offered the lowest power consumption while still giving a negligible wakeup time. On tag detection,
the modem is powered on, a connection to the Wi-Fi network established, the data is sent and the core
and modem are powered back off, allowing for the cycle to continue.

Finally, the RFID chip is also powered down when the system enters sleep, and re-enabled on system
wakeup. The power LEDs of the RFID board and the ESP-12 were also disabled.

Testing

The current draw of the system was measured using the voltage drop across a 1 Ω resistor.

9

Climber Timer Team 16

Figure 7: System current draw after card detection

As shown on figure 7, the Wi-Fi communication window draws approximately 70mA with peaks reaching
approximately 450mA. This data will be used later for power regulation design.

The average idle system current draw was measured to be approximately 15mA, down from approximately
85mA (70mA for the ESP-12 with active Wi-Fi and 15mA for the RFID reader). See appendix F.3.

The power saving software optimization can therefore be considered a success, as the power consumption
has been decreased by a factor of five; Wi-Fi communication windows are not included in this metric as
they constitute an insignificant amount of time when compared with the time spent in an idle state.

6.2.4 UDP Packet Transmission

After researching the Arduino libraries associated with the ESP-12 module, the UDP library[6] was
found. The User Datagram Protocol (UDP) is a simple method of sending packets of information via
Wi-Fi.

A second method of packet transmission called TCP was then considered. This system was more ro-
bust as the sender requires a handshake to confirm that the correct data packet has been accurately
received.

UDP was chosen to: reduce the software complexity with regards to data transmission, reduce complexity
of the receiver, and reduce the time required to implement a working communication method from the
ESP-12 to the server.

The packet composition was chosen to minimise the amount of processing and communication time. The
main block of code that is responsible for communication is outlined in appendix F.1 and was derived
from online examples[7]. The block initialises the UDP data stream with the IP address of the server
and the port number on which the server is listening. These are arbitrary values that can be changed to
fit different server configurations.

The code writes the following information to the UDP packet:

• RFID UID (card identifier)

10

Climber Timer Team 16

• Wristband reader ID

• UNIX timestamp in seconds

• 100s of milliseconds calculated by the internal clock for additional accuracy

The information is separated by a delimiter (\r\n) to make decoding the packet easier for the re-
ceiver.

6.2.5 Timing

The first method proposed for calculating the time taken for a climber to complete a problem was to
have the ESP-12 stay out of sleep mode and count the time between the scanning of a start tag and a
finish tag.

The second method proposed was to utilise the Network Time Protocol library[8] to synchronise the
system clock on the ESP-12 and provide time stamps associated with every scan. NTP is an internet
protocol that coordinates the clocks of computing systems to a given reference time[9].

Using the first method would require the nature of the tag (start, finish, login, etc) to be determined
and different attempts at a problem to be distinguishable. These extra logic functions would complicate
the code but the benefit would be a higher degree of timing precision, to the nearest 30ms as opposed
to 100ms.

The lower power consumption and reduced logic complexity was deemed preferable to the increased
accuracy. Therefore, NTP was the chosen method. The full code is in appendix F.1 and was implemented
using the NTPClient library.

The ESP-12 documentation[5] states that the Real Time Clock may be prone to a drift in the order of
milliseconds. In future versions of the code the ESP-12 will reconnect with the NTP pool and synchronise
more often so that the effect of the drift is minimised.

6.2.6 PCB

Whilst the initial development of the wristband was done on breadboard, a PCB was made for the final
prototype to reduce the size and weight of the wristband, and to add supporting power management
components. The two main aspects to this were power and PCB design.

Power Development

The goal was to design a rechargeable battery-based power source for the system to run off, with the spe-
cification that it must be rechargeable via micro-USB and have a battery life greater than 4 hours.

A battery needed to picked first as the charging and voltage subsystems were subject to the battery
specifications. The lithium-polymer (Li-Po) battery LP-402933-1S-3[10] was chosen for its high energy
density, small physical size, 300 mAh capacity (offering approximately 20h of runtime) and 600 mA max-
imum current output (above the 450 mA Wi-Fi transmission peak current draw). The Li-Po chemistry
also allows for nominal voltages higher than 3.3 V, meaning a step-down voltage regulator could be
used.

To charge the battery, the MCP73833 charging controller[11] was chosen because it supports the Li-Po
chemistry, 4.2 V charging voltage, 5 V input voltage (USB power rail nominal voltage) and has a small
MSOP-10 package suitable for manual soldering. The -833 variant was picked for its battery cell thermal
monitoring in addition to its standard thermal regulation features, making it safer to use.

Because battery output voltages are often unstable, a voltage regulator was required to control it. A
switching mode step-down regulator was chosen for its high efficiency compared to a linear voltage
regulator. The power rail voltage was fixed at 3.3 V as both the microcontroller[5] and the RFID chip[4]

on the board support it and it was closer to the lower limit of the battery voltage. 3.3 V was chosen
over 3 V to prevent potential voltage drops during RF activity from causing either of the ICs to enter

11

Climber Timer Team 16

brownout. The TI LM3671-3.3 voltage regulator [12] was chosen because it supports 3.3 V regulated
output voltage, 600 mA continuous current and input voltages of 3.3 V to 4.2 V. It is also available in a
compact SOT-23 package with few external passive components and fully accessible pins.

PCB Design

A schematic was made to imitate the breadboard prototype, as well as contain the core passives needed
for the ESP-12 to start-up (given by the Adafruit Huzzah breakout schematic[13]). Power IC schematics
were also drawn up based on their respective datasheets[12][11].

The PCB outline was drawn to fit under the RFID PCB next to the battery in order the keep the
wristband as small as possible. Components needing a given position (connectors, buttons etc.) were
placed first, followed by the ESP-12 module and the power ICs.

The PCB was then routed following the design rules for class 6C manufacture at Eurocircuits[14] to keep
the expenditure down. Traces (power traces in particular) were made thicker to prevent any voltage
drops across the board. The full PCB schematic and layouts can be found in appendix G.1, appendix
G.2 and appendix G.3.

Figure 8: PCB layout

A modified version had to be drawn to match the manufacturing specification of Newbury Electronics
(PCBTrain Express) as the PCBs needed to be reordered. This was due to the original courier fail-
ing to deliver parcels from Eurocircuits on time, with a delivery delay of over a week on a next-day
delivery.

6.2.7 Enclosure

Initial research into current wrist mounted wearables meant we investigated the designs of products
like the Apple Watch[15] and the Fitbit[16]. Both these designs opt for a streamline, lightweight casing.
Taking this into consideration a minimalist, futuristic aesthetic was chosen for the wristband enclosure.
As previously mentioned, the wristband should not restrict the climber in any way so a curve was added
to the back plate.

The PCB, RFID reader and battery were then modelled in Solidworks so that the enclosure size could
be adjusted and the correct position for the micro-USB charging port could be added. A clearance of
1 mm was given between individual parts so that the internal components could be fitted with additional

12

Climber Timer Team 16

Figure 9: Completed Enclosure

foam padding to absorb impacts from climbing. This will minimise damage to the sensitive parts of the
wristband like the RFID antenna, in addition to protecting the potentially hazardous Lithium Polymer
battery.

As part of the development process, the first iteration of the enclosure was 3-D printed and then exposed
to drops and general wear and tear. The first print (appendix H.1) was too weak to allow for a generic
wrist strap to be attached. The second iteration (appendix H.2) was designed to have more material
along the strap holders to retain their strength. This design was subsequently printed, tested and deemed
to be effective so work was started on the model of the enclosure lid (figure 9).

In keeping with modern products it was decided that the logo should be displayed without the product
name. The wristband identification number is also printed underneath this so that staff can quickly
identify malfunctioning products and send them out for maintenance. An appropriate font was sourced
to fit with the aesthetic.[17]

6.3 Testing

Hardware tests

A set of successful, simple tests were performed to evaluate the functionality of the final product:

• The battery charging circuit worked, it charges the battery when connected to a 5V micro USB
supply.

• The power regulator output was recorded as 3.3V with no load.

• The ESP-12 module initialised when injected with 3.3V.

• The ESP-12 connected to Wi-Fi and was able to send data. It was programmable through the
programming header on the board.

• The SPI connection from the ESP-12 module to the MFRC522 board was successful, and data was
transmitted correctly.

• The buzzer was audible on card scan.

Load Test

The load tests performed on the final wrist band product showed a large voltage discrepancy down to
2.5V, as well as audible coil whine on the inductor.

The PCB was designed following the TI specification but there was an issue with a mismatched capacitor.
This has since been confirmed by a TI engineer[18].

The capacitor was chosen for the use of X5R as a dielectric material, the low Equivalent Series Resistance
(ESR) and the capacitance value. Unfortunately the capacitance under 3.3V bias was too low, causing

13

Climber Timer Team 16

oscillation and instability.

Since the circuit works under no load, this issue would be solved with capacitor replacement and a closer
ground connection (already implemented in the Eurocircuits board version).

Timing Test

The timing test was performed using a stop watch and an altered version of the code that would constantly
print timestamps every second. The aim of the test was to obtain the amount of drift for a given duration
and compare it to the range specified by the manufacturers.

Figure 10: ESP-12 Timer Lag from Correct Time

The drift lag measured after 12159s (approximately 20 minutes) was 174s. A full record of the testing can
be found in appendix F.2. This was worse than stated in the ESP-12 Documentation. It was discovered
that the light sleep function was causing the drift to increase. As a result it was decided that the sleep
function should be used infrequently and for short periods of time.

6.4 Software

6.4.1 Overview

The aim of this system is to receive packets from the hardware system, interpret these packets, store
the relevant data in the database and display the contents of the database on a web interface. The web
interface must also allow a user with admin privileges to alter specific data in the database.

Figure 11: Network block diagram

14

Climber Timer Team 16

A Raspberry Pi will be used to host the database server along with the port listening software. This
will be the hub for the product as shown above. The user will interact only with the wristband and the
website. The website will use PHP to communicate with the MariaDB server while the wristband will
sent UDP packets to the port listening software (UDP Receiver).

6.4.2 Database

Overview

To store all the user and problem data, a MariaDB database server was used. MariaDB is an open-
source offshoot of MySQL, a relational database system. Using relational database, means tables within
a database can reference one another using foreign keys. This maintains integrity within the database
as data cannot be input into foreign key columns if the data doesn’t exist in the column the key is
referencing.

System Concept

The basic idea of the database structure was to have a user table, a problem table and a user_problem
table which creates a record for each unique user-problem pair. To save on data storage, setters were
stored in a setter table so they could be referred to by number in problem instead of by name. It also
allows for future data manipulation only concerning setters to be much more easily implemented. This
was then also done for tag and wristband. All tables except user_problem have a primary key, a
column that must be filled and must be unique for all rows, preventing table entries with duplicate IDs.
This maintains data integrity by preventing identical wristbands and the like accidentally being recorded.
A unique column is like a primary key, but can be empty. The final database structure is shown in figure
12, and the database was created using MariaDB’s tutorials on MySQL[19] as a guide.

Figure 12: Database structure

Most of the table columns are self-explanatory, but a few are of note. tag_number and wristband_number
exist despite them having ID columns so the numbers can be printed on the items for easy identification.
login is a boolean value that allows any tag to be used to assign a wristband to a user, as well as
adding new wristbands to the database. admin is a boolean value that determines if a user is an admin
for the website. user_connect contains the ID of a user who is being assigned a wristband. If a
wristband then scans the tag that has he user ID within 5 seconds, the wristband will then be assigned
to the user.

Testing

There were few tests that could be performed on the database without the website or the UDP receiver,
so all that could be tested was whether data that was nonexistent in referenced columns could be input
into columns with the relevant foreign keys, and if it could then be updated or deleted afterwards. This
was tried in all foreign key columns, and the database performed as expected.

15

Climber Timer Team 16

Modifications

The main modification made was when the MariaDB server was moved from a laptop to a Raspberry
Pi. Instead of running the server as a root user, it was run as an ordinary, unprivileged user to increase
security as otherwise a malicious attacker could create files posing as the root user who has no permission
restrictions.

6.4.3 UDP Receiver

After the wristband sends out the packet over Wi-Fi, a server-side program needs to receive the packet,
process it and input it into the database. It was decided a Python script would be suitable as they are
simple to run on the Raspberry Pi.

For the server to receive the UDP packet sent by the wristband, a UDP port needed to be opened on
the Raspberry Pi. The Python program (UDP receiver) used port 5000 as it is freely available and then
listens for any data sent from IP address “0.0.0.0”, which means it listens to any device transmitting to
that port. Once the packet is received, the receiver parses the packet into its components and then uses
a logic flowchart to process the data for the database correctly.

Figure 13: Final logic flowchart of the UDP receiver

To interact with the MariaDB server, a cursor is initialised which allows Python to write to the
database and MySQL and receive the results back. The full code can be found in appendix I.

Problems

A few problems were encountered when initially developing the receiver, one of which was accessing the
database via Python. The standard Python library cannot connect to a MySQL server so the library
mysql-connector was installed. However the receiver still wouldn’t connect because the user the
receiver was acting as to access the database didn’t have the relevant permissions to read and write to
it. This was solved by using the following command in the MariaDB client: Another issue was that the
results the cursor returned from database queries came in Python tuplets. This meant cursor results
could not be directly compared to the packet strings due to the mismatch in data types. This was solved
by accessing the result via an index.

Testing

To test the system, mock scenarios were set up within the database and a string structured like the
packet the wristband would send was passed through the receiver. The results were found by showing

16

Climber Timer Team 16

the content changes from the tables within the database. The initial tests undertaken are shown in
appendix J. The results of the tests were that the system only crashed when a new tag was scanned and
when the finish tag scaned was from a different problem to the previously scanned start tag. It should
be noted that at first all tests caused the system to crash as the receiver would not commit the changes
made to the database. This was solved by using mariadb_connection.commit() at the end of the
packet processing loop.

One issue that became apparent while testing was that not all the data packets sent were picked up by
the receiver. To investigate this, wristband was modified to send 10 packets and the receiver modified to
count how many were received. The time delay between sending the packets was varied to see the effect
on how many were received. Results are shown in figure 14

Time delay between
packets (ms)

Number of packets received

Attempt 1 Attempt 2 Attempt 3 Attempt 4 Average (%)
10 3 2 3 0 20
20 3 1 2 3 22.5
30 6 2 3 2 32.5
40 5 6 2 2 37.5
50 3 8 6 4 52.5
60 6 4 7 5 55
70 4 4 7 7 55

Figure 14: Results from time delay test

At 50 ms 52.5% of packets are received on average and increasing the time delay does not markedly
improve the percentage received. Because increasing the time delay further lengthens the transmission
time for little gain, 50 ms was chosen to be the new time delay, as well as increasing the number of
packets sent to 10. The system can be modelled as a binomial distribution of X ∼ B(10, 0.525) where X
is the number of packets received. From this, it can be found that the probability at least one packet is
received is 99.9%.

Modifications

After some investigation, the cause of the system crashes was found to be when the cursor returns NULL
after a query. This is not a Python tuple, and thus cannot be accessed via indexing the cursor, which
the receiver was doing in some if statements when comparing the result to None. The cursor was
changed to just return the full string in these instances, and the tests then performed as expected.

Another modification made was to include the variable old_data, which would contain the last packet
processed by the receiver. This is because the wristband sends multiple packets because the lack of
handshaking with UDP means that packets may not be delivered. If more than one of the same packet
is received, the receiver will now process it once and ignore all subsequent packets.

6.4.4 Website

The website must have several features that can be split into user features and admin only features. If
a user is an admin, they will have access to all the user features plus the specific admin only features.
It must also force the user to login so that the web pages are secure. The table below shows these
features.

17

Climber Timer Team 16

User Features Admin Only Features
Login to a user account Login to an admin account

Link a wristband to the user account that is
signed in

Delete problems from the problem database

View completion data for the logged in user Add wristbands to the system
View further data on problems that the user

has attempted
Alter wristbands in the system

View the full problem database Add tags to the system
Search the problem database using any

characteristic
Alter tags in the system

Logout Add setters to the database

Figure 15: Website feature breakdown

The website breaks down into seven different pages, of which only six are visible to an admin, and only
five to a regular user.

For the full PHP code, see appendix M.

Login Page: the first page a user is greeted with (see appendix K.1). The user can login or sign
up.

If the user attempts to login, the website queries the database table user to check if the login attempt
is valid. If it is, the user is directed to the main user page (User Data) and the input data is stored in
a global variable for login verification on different pages. If it is incorrect, the user is notified that the
input is invalid.

If the user clicks ’Sign Up’, then they are redirected to the sign up page.

Sign Up: the user is presented with a form to fill with basic info (see appendix K.2). If there is a
blank field on submission, the page rejects the input and prompts the user to fill out all the fields. When
this condition is met, the page creates an entry in the user table containing the provided details. A
user ID is assigned automatically. The user can then click a login button that returns them to the login
page.

User Data: the first page that the global variable containing the login data is called and checked against
the database. If it is found to be incorrect, the user is returned to the login page. This check prevents
the user from accessing the page just from the URL (known as URL bypassing).

This is the main user page, as it shows the user all of the data that they have recorded thus far (see
appendix K.3). It outputs the content of the database table user_problem in a visually appropriate
table. An extra column called ’More Info’ that leads the user to the Problem Data page. When this
is clicked, the problem number of the corresponding problem is passed to the problem page by the
URL.

Below the table is a set of navigational hyperlinks that lead to different parts of the website:

• Problem List: directs the user the Problem Data page

• Settings: directs the user to the Settings page (only visible to admin users)

• Connect Wristband: directs the user to the Connect page

• Logout: returns the user to the home page and clears the global variable containing the login data

Connect: after the normal login credentials check, the user is presented with an input box called
’Wristband Number’ (see appendix K.4). The user will then enter the number of wristband they are
going to use, and press enter. The page will then begin a five second countdown during which the user
will scan a login tag with the wristband. If this is successful, the wristband will now be linked to that
user.

18

Climber Timer Team 16

The five second countdown is in place to prevent confusion, as it is possible for the login tag to be
scanned by another user for a different purpose. By limiting the time the user has to scan, the potential
for this error has been reduced.

The page works be setting temp data in the database that is removed after five seconds. A column called
user_connect in the database table wristband is set to the user ID of the current user. At the end
of the countdown, the page is temporarily directed the Connect Result page.

This page is a very small page with one basic function. It has no visual representation as the user is
immediately redirected back to the Connect page once the required function has been performed. The
page looks at the user_connect column of the wristband table and checks this against the entered
wristband number.

By the time this page runs, the database should have been updated by the UDP receiver accordingly. If
the user scanned correctly within the five second window, the UDP receiver should have read the user ID
from the wristband table, and used this to put the wristband ID into the user column that corresponds
to the user ID, therefore linking the wristband to the current user.

Before redirecting back to the Connect page, the page clears the data stored in user_connect so that
the user has to scan within the five seconds.

Problem Data: this page is the largest page functionally. For a standard user, the page will display
a list of all the problems in the problem table of the database including all the data attached to each
problem (see appendix K.5). This includes:

• Problem Number

• Grade

• Setter

• Zone (problem area)

• Set Date

• Strip Date

Above this table, the user will see a ’Search Problem’ function which allows the user to query the database
using any of the characteristics shown in the table.

Also, if the user arrives at this page having pressed more info on a problem, the table will only show
information about that problem. This is done by reading the problem number from the URL.

Below the table is another set of navigational hyperlinks leading to other sections of the website.

As an admin, a couple of extra things are visible: An ’Add Problem’ function above the ’Problem Search
function’, a ’Delete’ function and the usual extra navigational hyperlink, ’Settings’.

The ’Search Problem’ function works by making dynamic queries. All input fields are checked to ensure
the input is valid and then the query is made. The result of which is printed in the table.

The ’Add Problem’ function forces the user to input all fields. It will also check certain entries, such
as ’Setter’ to ensure the setter exists within the Setter table. If all is correct, the page performs an
INSERT INTO query.

Finally the ’Delete’ function simply uses the corresponding problem number (as it is a unique field) to
perform a DELETE FROM query.

Settings: this page is an admin only page that will redirect the user to the login page if they are not
logged in as an admin.

A correctly logged in admin has access to several functions which are as follows: ’Add Wristband’,
’Add/Update Tag’ and ’Add Setter’ (see appendix K.6).

For ’Add Wristband’, the admin should scan the wristband on a login tag and then press the ’Add’
button on the website. The page first queries to check if the selected wristband number is already in

19

Climber Timer Team 16

use. If not, the page queries the Tag table to get the tag ID of the login tag. It then queries the the
Wristband table, to see which wristband last scanned the login tag (as the tag ID of the last scanned
tag is stored temporarily in the Wristband table). It then sets the wristband number of the scanned
wristband to the value entered in the box.

For the ‘Add/Update Tag’. the admin scans the tag they want to reassign with a wristband. Then they
enter the wristband number of the wristband they used and the new tag number they want to assign
to the tag they just scanned. The page first queries the Tag table to ensure that the tag number is
not already in use. If not, it queries the Wristband table and uses the entered wristband number to
find the tag ID of the scanned tag. It then assigns the tag ID to the entered tag number in the Tag
table.

Finally for the ‘Add Setter’ it simply performs an INSERT INTO query on the Setter table. A query
is made prior to this to check the setter does not already exist.

As usual, the page includes the same set of navigational hyperlinks leading to all other pages of the
site.

The functionality described in the PDS has been compared with the actual functionality below.

PDS Feature Actual Performance
The application shall have instant data updating Data is not updated real time due to the

simplicity of the site, however it will update
on refresh

The application will also allow the
user to view information about a given

problem including:

Setter grade
(Difficulty

assigned by
the setter)

The website allows the user to do this

Setter
(person who
created the
problem)

The website allows the user to do this

User grade
(Voted grade

by the
community)

The concept was not implemented in the
final design

Date of
creation

The website allows the user to do this

Estimated
date of
removal

The website allows the user to do this

Figure 16: PDS comparison - website

Problems

When writing the PHP needed for these web pages, several problems arose.

Firstly, when a user input was being used as part of a query, it was found that the user could enter a
query and delete data from the database. This was solved by using a function called preg_match which
checked the user input against a list of symbols and rejected it if it contained any of them.

After this, it was also found that a non-admin user could access the ‘Settings’ page just by typing in the
correct URL. This was solved by using a previously mentioned global variable $_SESSION to store the
users login information. This was checked for validity on every page to ensure this URL bypass was not
possible.

The final issue that arose was to do with the admin only features. For a regular user, the visuals that
were supposed to be invisible to a non-admin user, were visible. They didn’t perform the functions they

20

Climber Timer Team 16

were supposed to, but they were still visible. This was solved simply by including the HTML code inside
conditional PHP statements.

Testing

Testing was carried out using a test database to check that the website was performing as required
(appendix L).

It was found that the website fulfilled the PDS requirements. Further improvements are possible but for
the purposes of a prototype, it functions sufficiently.

6.5 Development Costs

The budget for the total project including prototyping was £200. The final cost came to £204.54. The
purchase of some development parts such as an ESP-12 breakout board and an FTDI cable could have
been omitted but they were purchased to allow the code to be written faster as two people could work
on them in parallel. The complete breakdown of everything purchased is in appendix D.

The breakdown costs of the wristband itself are in appendix E.

Excluding all the development costs, the total cost of the final wearable device is £66.83 which is not
within reasonable limits as multiple wristbands would be required per centre. However, should these be
produced in a batch size of 50 or larger the PCBs drop to approximately £2 per board instead of £25.
The Li-Po battery would also decrease from £18 to £10. Extra savings can be made by methods such
as removing the MFRC522 development board and replacing with the MFRC522 chip with a separate
antenna.

7 Evaluation

The Climber Timer aimed to solve the issue of the lack of an automated system for indoor climbing
centres to log their customers’ climbs. It successfully does this with the RFID tag system combined
with the database and website. By having the RFID tags on each problem passive, it allows for easy
installation on walls when new problems are set and doesn’t require a huge infrastructure overhaul of
the centre. The relatively inexpensive RFID tags and wristband allow for the Climber Timer to easily
be scaled up for climbing centres of any size at a reasonable cost. The RFID wristbands are effective
due to its long battery life and its size not hindering the user’s climbing ability. Improvements can be
made but on the whole the Climber Timer solves the initial problem.

8 Business Plan

The system will be marketed to climbing centres as a package. They will select how many wristbands
and how many tags they need, and our company will install the system. How they use the system will
be decided by the centre, but our company will recommend renting out the wristbands to users the same
way they rent out shoes and chalk. This way they will make regular returns on the system. It will be
possible to implement sale plans like a monthly rental system or a ‘Buy 8 wristband hires for the price
of 10’ deal.

As a target audience, climbing centres in the UK is a small group. To ensure that the business can
function in the long term, there will be a yearly software subscription fee. The cost of each product is
shown below.

21

Climber Timer Team 16

Item Unit Price (£)
Wristband 20

Tag (per 50) 40
Yearly Software

Subscription
100

Installation Fee 200

Figure 17: Product price breakdown

9 Future Development

9.1 Hardware

9.1.1 Power Consumption

The greatest challenge for the hardware is to increase the amount of time the wristband is usable for the
climber. The simplest method would be to increase the battery capacity. This is inadvisable as it would
increase the size of the wristband.

In addition to the light sleep command, the ESP-12 has a deep sleep command. This would draw
current in the order of microamps when disconnected from the internet. The main issue with this is that
external circuitry would be required to wake the ESP-12. In an ideal situation, the interrupt function of
the MFRC522 reader would be used but this was not possible with the board available.

There is potential for transitioning to a different Wi-Fi enabled microcontroller such as the ESP32[20].
These have a lower power consumption and a faster processing speed.

Bluetooth could be used as an alternative to Wi-Fi as the power consumption is significantly lower. The
nRF51822[21] is a low energy Bluetooth module that has an idle current consumption of 100µA with a
peak of 10mA. The range is significantly lower than Wi-Fi so this may not be a viable option.

9.1.2 Size & Enclosure

The main component limiting the size of the system is the MFRC522 development board. The board
was initially chosen to reduce the prototyping time due to its pre-assembled nature. After working with
the board it would now be possible to alter the PCB design to include the relevant components. This
would allow the antenna to be constructed off-board, potentially embedded in the enclosure.

Other simpler methods to reduce the size of the device include:

• Optimise the PCB design.

• Use thinner PCB material

• Choose smaller components

• Implement a removable programming header

If the product were taken to be mass manufactured it would be cost effective to produce a mould for
injection moulding and have the enclosure be constructed from ABS as recommended by the British
Plastics Federation[22]. ABS impact resistant so the walls of the enclosure could be made thinner.
Another material option would be a flexible rubber. This would increase the comfort of the user as it
would flex to fit their wrist as well as compress on impact to reduce shocks to the internals.

22

Climber Timer Team 16

9.1.3 Timing Improvements

Adding an external Real Time Clock chip would decrease the timing drift as this would not be affected by
the ESP-12 sleep function. The DS1337 chip[23] is an I2C controlled Real Time Clock which completely
manages all timekeeping functions. It can count seconds, minutes, hours and can keep track of the Day,
Date, Month, and Year with Leap-Year Compensation valid up to 2100.

It has surface-mount package with an Integrated Crystal (DC1337C). This will save space on the future
PCB. The chip can function over a temperature range of -40°C to 85°C meaning that it will work in the
climbing environment.

9.2 Software

9.2.1 Website Security

While some security measures were implemented in this project, they would not be adequate for the
Climber Timer to be used commercially. Currently the passwords of the users are stored in cleartext
within then database, which is very vulnerable should a hacker gain access to it. This can be solved by
using a hash function on the passwords, so the original passwords are not recoverable from the result
stored. This method still has vulnerabilities as common passwords could be identified as they would
have the same hash result. For good password security, the password should be passed through the hash
function in combination with the username. Due to the uniqueness of usernames, common passwords
could not be identified solely through the hash result as the result returned would now be different.

9.2.2 Website Aesthetics

While the current state of the website is functional, it is not visually appealing. To improve this, CSS files
can be used in conjunction with the PHP files already developed. An example of a potential CSS-styled
login page is shown below.

Figure 18: Current login page Figure 19: CSS login page

There is a clear visual improvement in the website when CSS is used, and this can enable the website to
be more user-friendly with an intuitive user interface.

23

Climber Timer Team 16

10 References

[1] ReportsnReports. Sports Coaching Platform Technology Market Worth $864M by 2021.
url: https://www.prnewswire.com/news-releases/sports-coaching-platform-
technology-market-worth-864m-by-2021-561558701.html (visited on 15/03/2018).

[2] Climbax. Climbax home page. url: http://www.climbax.co.uk/ (visited on 17/12/2017).
[3] Indiegogo. Whipper Indiegogo campaign page.

url: https://www.indiegogo.com/projects/whipper-world-s-1st-climbing-
performance-tracker-sports-fitness (visited on 17/12/2017).

[4] NXP. MFRC522 datasheet.
url: www.nxp.com/docs/en/data-sheet/MFRC522.pdf (visited on 07/03/2018).

[5] AI-Thinker. ESP-12 datasheet. url:
http://www.kloppenborg.net/images/blog/esp8266/esp8266-esp12e-specs.pdf
(visited on 13/02/2018).

[6] Arduino. UDP Library. url: https://github.com/esp8266/Arduino/blob/master/
libraries/ESP8266WiFi/src/WiFiUdp.cpp (visited on 20/02/2018).

[7] Arduino. UDP Examples.
url: http://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/udp-
class.html (visited on 20/02/2018).

[8] Testato. NTP Library.
url: https://github.com/arduino-libraries/NTPClient (visited on 10/03/2018).

[9] NTP. What is NTP?
url: http://www.ntp.org/ntpfaq/NTP-s-def.htm (visited on 13/03/2018).

[10] Dubilier. LP-402933-1S-3 datasheet.
url: http://www.farnell.com/datasheets/1666647.pdf?_ga=2.80958292.
219595593.1521824954-874997243.1521824954 (visited on 15/02/2018).

[11] Microchip. MCP73833 datasheet.
url: http://ww1.microchip.com/downloads/en/DeviceDoc/22005a.pdf (visited on
21/02/2018).

[12] Texas Instruments. LM3617 datasheet.
url: http://www.ti.com/lit/ds/symlink/lm3671.pdf (visited on 22/02/2018).

[13] Adafruit Industries. Adafruit Huzzah ESP8266 breakout PCB schematics. url:
https://github.com/adafruit/Adafruit-Huzzah-ESP8266-Basic-Breakout-PCB
(visited on 02/03/2018).

[14] Eurocircuits. Eurocircuits PCB design rules. url:
https://www.eurocircuits.com/pcb-design-guidelines/ (visited on 10/03/2018).

[15] Apple Inc. Apple Watch.
url: https://www.apple.com/uk/watch/ (visited on 07/03/2018).

[16] Fitbit. Fitbit. url: https://www.fitbit.com/uk/home (visited on 07/03/2018).
[17] Valve. Enclosure font.

url: https://developer.valvesoftware.com/wiki/Custom_Testchamber_Signs
(visited on 08/03/2018).

[18] TI forum users Texas Instruments. TI E2E forum.
url: https://e2e.ti.com/support/power_management/non-
isolated_dcdc/f/196/p/673583/2480113 (visited on 22/03/2018).

[19] MariaDB. MariaDB Training & Tutorials.
url: https://mariadb.com/kb/en/library/training-tutorials/ (visited on
28/02/2018).

[20] Espressif. ESP32.
url: https://www.espressif.com/en/products/hardware/esp32/overview (visited
on 15/03/2018).

[21] Nordic Semiconductor. Low Energy Bluetooth Module.
url: https://www.mouser.co.uk/new/nordicsemiconductor/nRF51822-
multiprotocol-SoC/ (visited on 15/03/2018).

24

Climber Timer Team 16

[22] British Plastics. Injection moulding.
url: http://www.bpf.co.uk/plastipedia/processes/injection_moulding.aspx
(visited on 12/03/2018).

[23] Maxim Instruments. External Real Time Clock.
url: https://www.maximintegrated.com/en/products/digital/real-time-
clocks/DS1337.html (visited on 13/03/2018).

[24] Amazon. Wristband purchase link. url: https:
//www.amazon.co.uk/dp/B00B23NIOY/ref=cm_sw_r_cp_apap_oy5wwYUd8rGzu
(visited on 23/02/2018).

Appendices

A Glossary

• Bouldering - short climbing above crash pads without ropes. This project will only deal with
bouldering in an indoor environment.

• Problem - a specific route to the top of a bouldering wall normally indicated by a specific colour
of hold.

• Setter - a person who creates problems within a climbing centre, by drilling holds to the wall.

• Set Date - the date on which the problem was put on the wall.

• Strip Date - the date on which the problem was removed from the wall.

25

Climber Timer Team 16

B Gantt Chart

Figure 20: Project Gantt chart

26

Climber Timer Team 16

C Meeting Minutes

C.1 Meeting: 13/10/2017

Time 13:11 - 13:52

Present: AS, TP, AP, TB, BB, BO

• Climbing Wall Router: - Alex & Bonne

– Displays video

– Take picture of wall

– App

– Mainly software

– Maybe ranking system

– Logs time

– Drill tag to stay by hold

– THROUGH TO PROPOSAL ROUND

• Bike:

– Automatic gearbox

– DENIED

– Auto-balancing bike

– Beyond technical ability

– DENIED

• Fingerprint Lock:

– Maybe buy a fingerprint module

– Resulting in mainly software

– Not rewarding challenge

– DENIED

C.2 Meeting: 20/10/2017

Time 13:15 - 13:59

Present: AS, TP, AP, TB, BB, BO

• Dyslexia Pen: - Ben & Tomasz

– Mount camera to highlighter sized device

– Heavily biased toward software

– THROUGH TO PROPOSAL ROUND

• OAPill Dispenser:

– too derivative

– DENIED

• Auto-Jar:

27

Climber Timer Team 16

– Over engineering, solves no problem

– DENIED

• Emergency Mesh Network:

– emergency button for people in disaster areas

– backup network

– NEED TO CHECK IF NEEDED: Tomasz

– NEEDS GOVERNMENT PERMISSION

– DENIED

• Guitar auto-tuner: - Archit & Tom

– for one type of guitar (acoustic)

– maybe for violin or ukelele

– THROUGH TO PROPOSAL ROUND

C.3 Meeting: 03/11/2017

Time 12:10 - 12:30

Present: AS, TP, AP, TB, BB, BO

• Contacted climbing centre to gauge viability of router system

– Operations manager said it was a good idea

• Spoke to Learning Support assistant about viability of dyslexia pen

– Current products are £200+

– If it can be made cheaper it is viable

• Spoke to a number of guitar owners

– Potentially viable if it doesn’t damage guitar

– Cheap

– Works fast as tuning can be quite quick

C.4 Meeting: 10/11/2017

Time 12:15 - 12:43

Present: AS, TP, AP, TB, TE, BB, BO

• Make slides for Pecha Kucha

• Prepare for presentation

• Work divided between subgroup

– Router - Alex & Bonne

– Dyslexia pen - Tomasz & Ben

– Guitar tuner - Archit & Tom

28

Climber Timer Team 16

C.5 Meeting: 24/11/2017

Time 12:15 - 12:52

Present: AS, TP, AP, TB, TE, BB, BO

• Final vote after presentation to hackspace

– Climbing router chosen

• Task for all members is to research potential methods of creating router

• Alex will return to climbing centre to get more info about requirements

C.6 Meeting: 01/12/2017

Time 12:15 - 12:52

Present: AS, TP, AP, TB, TE, BB, BO

• 3 out of 5 solutions decided

– Active wrist, passive wall

– Active wall, passive wrist

– Wearable smart tag

• Active wrist, passive wall - Tom and Alex

– Can be expanded to all holds easily, not just start and end

– Means don’t have to worry about battery life

– RFID

– Centre would hire out and charge wristbands

– Would have to pay attention to detection range, especially if applying to all holds as they can
be close together huge

– Wristband may end up being very chunky

– End hold might need more thought due to positioning the hand holds

– Screw tags into wall

• Active wall, passive wrist

– Would require far too many wristbands

– Wristbands can be tiny and flexible

– Battery life of wall would have to be long to match when problems are stripped

– Screw tags into wall

– Cheap

– More idiot proof/durable

– Costs under £5

• Wearable smart tag - Bonne

– https://www.indiegogo.com/projects/whipper-world-s-1st-climbing-performance-tracker-sports-
fitness#/

– Works for route cimbing

29

Climber Timer Team 16

– May have issues with bouldering, doesn’t know how you finish

– Has various sensors to do useful stuff (maybe too many sensors required for accurate tracking?)

C.7 Meeting: 08/12/2017

Time 12:35 - 13:30

Present: AS, TP, AP, TB, TE, BB, BO

• Final 2 solutions

– Cameras/kinect

– Smart holds

• Cameras - Tomasz

– Have a QR code on your back

– Body contortions may mess things up

– Need an identifying marker on the person somehow

– Technical software, expense

– Identifying when a person succeeds and fails could be an issue

– Use a kinect?

• Smart Holds - Ben

– Pressure sensitive holds

– Would have to replace ALL holds in a centre (expense)

– Finger print scanning

– Holds only solution

• Gantt Chart - Tamara

– Gantt chart

– Next steps

– Miscellaneous write up

• Design Criteria - Archit

– Performance

– Life in service

– Environment

– Safety

– Ergonomics

– Installation

– Target Product Cost

– Size

– Weight

• Deadline: Wed 13th 6pm

30

Climber Timer Team 16

C.8 Meeting: 19/01/2018

Time 12:35 - 13:30

Present: AS, AP, TB, BB, BO

• Bonne is made 2nd editor

• Need to meet with supervisor

• A decision needs to be made about the final design

• Find out about website that needs to exist

• Decided on passive tag, active wrist

• Need to decide on communication methods (Bluetooth, Wi-Fi etc.)

• NFC tags needed

• Decided on Wi-Fi

• Not a custom PCB

• Deadline: 02/02/18 5pm - designs and component lists

C.9 Meeting: 26/01/2018

Time 12:28 - 13:20

Present: AS, TP, AP, TB, TE, BB, BO

• Division into subgroups

• Database - Tamara (might become webmaster), Alex, Bonne, Archit

– App/website (app probably not necessary)

– Data lists

– Server (necessary for this project)

• Hardware - Tomasz, Tom, Ben

– Send identifier from tag to band and timestamp, unique identifier for band and tag for from
band to server

– Will require power

– NFC

– Wi-Fi modules

– Clock (from processor)

– Set of passive tags for wristband

C.10 Meeting: 09/02/2018

Time 11:18 - 11:44

Present: AS, TP, AP, TB, TE, BB, BO

• Hardware

– Initial test board working

• Software

31

Climber Timer Team 16

– Look into wordpress

– Check out jangle

– Listen to ports/socket for information (write a program)

– Python, MariaDB, API

– Set up databases - consider storage

C.11 Meeting: 23/02/2018

Time 12:15 - 12:52

Present: TP, AP, TB, BO

• Hardware

– Haptic feedback from device?

– Fix deep sleep issue with fixed interrupt modes on MFRC522

– Begin to design enclosure

• Software

– System concept complete

– Implement UDP receiver

C.12 Meeting: 09/03/2018

Time 12:30 - 13:05

Present: AS, TP, AP, TB, TE, BB, BO

• Begin preparing for final presentation

• Points to be covered in presentation

– Problem overview

– Overview of Wi-Fi, RFID, ESP

– Hardware subgroup overview and problems

– Sleep, UDP, NTP, PCB highlights, CAD model industrial design highlight

– Business Plan

• Hardware

– Where is our PCB?

• Software

– Improve website aesthetics - Tamara

C.13 Meeting: 14/03/2018

Time 11:43 - 13:05

Present: AS, TP, AP, TB, TE, BB, BO

• Run through for final presentation

32

Climber Timer Team 16

• Set up tags and test overall server connectivity for demo

• Further hardware testing - make sure timing issue is solved

• Connect aesthetic website to server and pull data (merge PHP codes)

• Final report delegation

D Project Development Costs

Part Name Part No. Supplier
Unit
Price

Quantity
Total
Price

4.7µF 6.3V X5R capacitor GRM188R60J475KE19D Farnell £0.123 20 £2.40
4.7µF 10V X5R capacitor GRM188R61A475KE15D Farnell £0.127 10 £1.27
1µF X5R capacitor GRM188R60J105KA01D Farnell £0.0787 1 £0.79
1.2V signal diode 1N4148WS-E3-08 Farnell £0.138 5 £0.69
8 way SIL 2.54mm header 2211S-08G Farnell £0.04 5 £0.20
3 way 90° 2.54mm header MC34747 Farnell £0.024 5 £0.12
2.2µ H Inductor 1.9A DFE201610E-2R2M=P2 Farnell £0.194 5 £0.97
Green LED 2.4V LGQ396-PS-35 Farnell £0.191 5 £0.96
Blue LED 2.9V LNJ926W8CRA Farnell £0.378 5 £1.89
10kΩ resistor MCWR06X1002FTL Farnell £0.0031 50 £0.16
1kΩ resistor MCWR06X1001FTL Farnell £0.0031 10 £0.03
4.7kΩ resistor MCWR06X4701FTL Farnell £0.0003 10 £0.03
0Ω resistor MC0603SAF0000T5E Farnell £0.0073 20 £0.15
Li-Po charging controller MCP73833-FCI/UN Farnell £0.719 5 £3.60
90° Li-Po connector 53048-0310 Farnell £0.206 5 £1.03
300mAh Li-Po Battery LP-402933-IS-3 Farnell £18.45 1 £18.45
SMD tactile switch SKSCLDE010 Mouser £0.428 10 £4.28
Micro USB connector ZX62-AB-5PA(31) Mouser £0.561 5 £2.81
3v3 SMPS regulator LM3671MF-3.3/NOPB Mouser £1.03 5 £5.15
Piezo buzzer AT-2310-T-LW100-R Mouser £1.80 3 £5.40
HUZZAH ESP-12 breakout ADAFRUIT 2471 Rapid £10.21 2 £20.41
ESP-12 SMD ADAFRUIT 2471 Rapid £7.25 2 £14.50
FTDI Cable USBSERIALTTL Rapid £14.28 2 £28.56
3 off custom PCB Not Applicable PCB Train £75.50 1 £75.50
RFID reader/writer MFRC522 eBay £3.85 2 £7.70
Wristband Not Applicable Amazon £7.49 1 £7.49

Total £204.54

33

Climber Timer Team 16

E Prototype Costs

Part Name Type Unit Price
Quantity
per unit

Total
Price

4.7µF 6.3V X5R capacitor PCB component £0.123 3 £0.37
4.7µF 10V X5R capacitor PCB component £0.127 1 £0.13
1µF X5R capacitor PCB component £0.0787 1 £0.08
1.2V signal diode PCB component £0.138 1 £0.14
8 way SIL 2.54mm header PCB component £0.04 1 £0.04
2.2µ H Inductor 1.9A PCB component £0.194 1 £0.19
Green LED 2.4V PCB component £0.191 1 £0.19
10kΩ resistor PCB component £0.0031 9 £0.03
1kΩ resistor PCB component £0.0031 1 £0.01
4.7kΩ resistor PCB component £0.0003 1 £0.00
0Ω resistor PCB component £0.0073 2 £0.01
Li-Po charging controller PCB component £0.719 1 £0.72
90° Li-Po connector PCB component £0.206 1 £0.21
300mAh Li-Po Battery Battery £18.45 1 £18.45
SMD tactile switch PCB component £0.428 2 £0.86
Micro USB connector PCB component £0.561 1 £0.56
3v3 SMPS regulator PCB component £1.03 1 £1.03
Piezo buzzer PCB component £1.80 1 £1.80
ESP-12 SMD External Module £7.25 1 £7.25
Custom PCB PCB £25.17 1 £25.17
RFID reader/writer External Module £2.12 1 £2.12
Wristband Wristband £7.49[24] 1 £7.49

£66.83

34

Climber Timer Team 16

F Hardware Code Resources

F.1 ESP-12 Code

1 #include <SPI.h>
2 #include <MFRC522.h>
3 #include <Wi-FiUdp.h>
4 #include <ESP-12Wi-Fi.h>
5 #include <NTPClient.h>
6
7 extern "C" {
8 #include "gpio.h"
9 #include "ets_sys.h"

10 #include "user_interface.h"
11 }
12
13 #define RST_PIN 2
14 #define SS_PIN 15
15 #define IRQ_PIN 4
16
17 MFRC522 rfid(SS_PIN, RST_PIN); // Instance of the class
18 MFRC522::MIFARE_Key key;
19
20 // Initialise array that will store new NUID
21 byte nuidPICC[4];
22
23 //Network name and password
24 const char ssid[32] = "Climber_Network";
25 const char password[64] = "iamthesenate66";
26
27 struct station_config stationConf;
28 Wi-FiUDP Udp;
29
30 //Delimiter used to split up message, ID of the wristband
31 const char DELIMITER[] = "\r\n";
32 const char READER_ID[] = "01";
33
34 //The address of the NTP pool used to get the address of an NTP server
35 #define NTP_OFFSET 0
36 #define NTP_ADDRESS "europe.pool.ntp.org"
37
38 //initialises timing parts of the code
39 NTPClient timeClient(Udp, NTP_ADDRESS,NTP_OFFSET);
40
41 unsigned long currentmillis = 0;
42 unsigned long previousmillis = 0;
43 unsigned long millidifference = 0;
44 unsigned long currentepochtime = 0;
45 unsigned long previousepochtime = 0;
46
47 void setup() {
48 //initialise outputs and esp8266 sleep type
49 gpio_init();
50 wifi_fpm_set_sleep_type(LIGHT_SLEEP_T);
51

35

Climber Timer Team 16

52 pinMode(0, OUTPUT);
53 digitalWrite(0, HIGH);
54
55 pinMode(5, OUTPUT);
56 //set buzzer frequency
57 analogWriteFreq(4000);
58
59 Serial.begin(115200);
60 //set up communication with the RFID reader board
61 SPI.begin(); // Init SPI bus
62 rfid.PCD_Init(); // Init MFRC522
63
64 for (byte i = 0; i < 6; i++) {
65 key.keyByte[i] = 0xFF;
66 }
67
68 Serial.println(F("Starting networking"));
69 Serial.print(F("Connecting to SSID: "));
70 Serial.println(ssid);
71 //Connect to the Access Point
72 wifi_set_opmode(STATION_MODE);
73 stationConf.bssid_set = 0;
74 os_memcpy(&stationConf.ssid, ssid, 32);
75 os_memcpy(&stationConf.password, password, 64);
76 wifi_station_set_config(&stationConf);
77 wifi_station_connect();
78
79 Serial.println(F("Waiting for network..."));
80 while (wifi_station_get_connect_status() != STATION_GOT_IP)
81 {
82 Serial.print(wifi_station_get_connect_status());
83 delay(500);
84 }
85
86 Serial.println();
87 //update the onbaord real time clock to the correct UNIX time according

to NTP
88 timeClient.begin();
89 timeClient.forceUpdate();
90 delay(20);
91 Serial.println(timeClient.getEpochTime());
92 //disconnect for power saving
93 Serial.println(F("Network setup OK, disconnecting"));
94 wifi_station_disconnect();
95 wifi_set_opmode(NULL_MODE);
96
97 Serial.println(F("Setup complete"));
98 }
99

100 void loop() {
101 currentmillis = millis();
102 //get current unix timestamp from the RTC
103 currentepochtime = timeClient.getEpochTime();
104
105 if (currentepochtime > previousepochtime)
106 {

36

Climber Timer Team 16

107 previousmillis = currentmillis;
108 }
109
110 previousepochtime = currentepochtime;
111 //get the milli second difference for accuracy of 10ths of a second
112 millidifference = ((currentmillis-previousmillis)+50)/100;
113
114 //poll the RFID reader to check for card upon waking up, takes approx 30

ms
115 if (rfid.PICC_IsNewCardPresent() && rfid.PICC_ReadCardSerial())
116 {
117
118 MFRC522::PICC_Type piccType = rfid.PICC_GetType(rfid.uid.sak);
119
120 //beeps the buzzer
121 analogWrite(5, 511);
122 delay(500);
123 analogWrite(5, 0);
124
125 // Check is the PICC of Classic MIFARE type
126 if (piccType != MFRC522::PICC_TYPE_MIFARE_MINI &&
127 piccType != MFRC522::PICC_TYPE_MIFARE_1K &&
128 piccType != MFRC522::PICC_TYPE_MIFARE_4K) {
129 Serial.println(F("Your tag is not of type MIFARE Classic."));
130 return;
131 }
132
133 if (rfid.uid.uidByte[0] != nuidPICC[0] ||
134 rfid.uid.uidByte[1] != nuidPICC[1] ||
135 rfid.uid.uidByte[2] != nuidPICC[2] ||
136 rfid.uid.uidByte[3] != nuidPICC[3])
137 {
138 Serial.println(F("A new card has been detected."));
139
140 // Store NUID into nuidPICC array
141 for (byte i = 0; i < 4; i++)
142 {
143 nuidPICC[i] = rfid.uid.uidByte[i];
144 }
145
146 Serial.print(F("Card NUID: "));
147 printHex(rfid.uid.uidByte, rfid.uid.size);
148 Serial.println();
149 }
150 else
151 {
152 Serial.println(F("Card read previously."));
153 }
154
155 Serial.print("Timestamp: ");
156 Serial.print(timeClient.getFormattedTime());
157 Serial.print(".");
158 Serial.println(millidifference);
159
160 // Halt PICC
161 rfid.PICC_HaltA();

37

Climber Timer Team 16

162
163 // Stop encryption on PCD
164 rfid.PCD_StopCrypto1();
165
166 Serial.println(F("Connecting to network for data upload..."));
167 wifi_set_opmode(STATION_MODE);
168 wifi_station_connect();
169
170 Serial.println(F("Waiting for network..."));
171 while (wifi_station_get_connect_status() != STATION_GOT_IP)
172 {
173 Serial.print(wifi_station_get_connect_status());
174 delay(500);
175 system_soft_wdt_feed(); // nice doggo
176 }
177 Serial.println();
178
179
180 system_soft_wdt_feed(); // nice doggo
181
182 //connects to server at correct UDP port
183 Udp.beginPacket("192.168.50.1", 5000);
184 Serial.println(F("Sending packet..."));
185 Udp.print(DELIMITER);
186 //sends the UID of the RFID tag
187 for (byte i = 0; i < rfid.uid.size; i++)
188 {
189 Udp.print(rfid.uid.uidByte[i] < 0x10 ? " 0" : "");
190 Udp.print(rfid.uid.uidByte[i], HEX);
191 }
192 Udp.print(DELIMITER);
193 Udp.print(READER_ID);
194 Udp.print(DELIMITER);
195 Udp.print(currentepochtime);
196 Udp.print(DELIMITER);
197 Udp.print(millidifference);
198 delay(10);
199 Udp.endPacket();
200
201 system_soft_wdt_feed(); // nice doggo
202 //packet is not always heard so copies of the packet are sent
203 //The database can handle copies
204 Udp.beginPacket("192.168.50.1", 5000);
205 Serial.println(F("Sending packet..."));
206 Udp.print(DELIMITER);
207 for (byte i = 0; i < rfid.uid.size; i++)
208 {
209 Udp.print(rfid.uid.uidByte[i] < 0x10 ? " 0" : ".");
210 Udp.print(rfid.uid.uidByte[i], HEX);
211 }
212 Udp.print(DELIMITER);
213 Udp.print(READER_ID);
214 Udp.print(DELIMITER);
215 Udp.print(currentepochtime);
216 Udp.print(DELIMITER);
217 Udp.print(millidifference);

38

Climber Timer Team 16

218 delay(10);
219 Udp.endPacket();
220
221 system_soft_wdt_feed(); // nice doggo
222 Serial.println(F("Disconnecting network..."));
223 //transmission complete, disconnecting for power saving
224 wifi_station_disconnect();
225 wifi_set_opmode(NULL_MODE);
226 }
227 //maximal power savings by shutting down the modem and the CPU
228 light_sleep();
229 delay(71); //needs to be 1 ms longer than the light_sleep time
230 }
231
232 //call back funciton required on wakeup
233 void wakeupnormal()
234 {
235 wifi_fpm_close();
236
237 Wi-Fi.forceSleepBegin();
238 Serial.flush(); // CERTAIN CODE LINES MAY BE VITAL TO YOUR SUCCESS. DO

NOT DESTROY VITAL CODE
239 rfid.PCD_SoftPowerUp();
240 }
241
242 //engages light sleep using ESP specific API
243 void light_sleep()
244 {
245 rfid.PCD_SoftPowerDown();
246 wifi_station_disconnect();
247 wifi_set_opmode(NULL_MODE);
248 wifi_fpm_open();
249 wifi_fpm_set_sleep_type(LIGHT_SLEEP_T);
250
251 wifi_fpm_set_wakeup_cb(wakeupnormal);
252 wifi_fpm_do_sleep(70*1000);
253 }
254
255 //Helper routine to dump a byte array as hex values to Serial.
256 void printHex(byte *buffer, byte bufferSize) {
257 for (byte i = 0; i < bufferSize; i++) {
258 Serial.print(buffer[i] < 0x10 ? " 0" : " ");
259 Serial.print(buffer[i], HEX);
260 }
261 }
262
263 //Helper routine to dump a byte array as dec values to Serial.
264 void printDec(byte *buffer, byte bufferSize) {
265 for (byte i = 0; i < bufferSize; i++) {
266 Serial.print(buffer[i] < 0x10 ? " 0" : " ");
267 Serial.print(buffer[i], DEC);
268 }
269 }

39

Climber Timer Team 16

F.2 ESP Timer Testing

Figure 21: Comparison of Stopwatch time to ESP-12 Timer

Figure 22: ESP-12 Timer Lag from Correct Time

40

Climber Timer Team 16

F.3 Oscilloscope Power Consumption Data

Figure 23: Idle system current draw

Figure 24: System current draw

41

Climber Timer Team 16

G PCB Development

G.1 Schematic

42

Climber Timer Team 16

G.2 Top Layer

43

Climber Timer Team 16

G.3 Bottom Layer

44

Climber Timer Team 16

G.4 Physical PCB

Figure 25: Top:PCB Train Rushed Job, Bottom: PCB Express Delayed Shipping

45

Climber Timer Team 16

H Enclosure Development

H.1 1st Iteration

46

Climber Timer Team 16

H.2 2nd Iteration

47

Climber Timer Team 16

H.3 Closed Render

48

Climber Timer Team 16

H.4 Exploded Render

49

Climber Timer Team 16

H.5 Enclosure Base Drawing

50

Climber Timer Team 16

H.6 Enclosure Lid Drawing

51

Climber Timer Team 16

H.7 Final Form

52

Climber Timer Team 16

I UDP Receiver Code

1 #!/usr/bin/python
2 import mysql.connector as mariadb
3 import socket
4
5 #set up udp socket
6 UDP_IP = "0.0.0.0"
7 UDP_PORT = 5000
8
9 sock = socket.socket(socket.AF_INET, # Internet

10 socket.SOCK_DGRAM) # UDP
11
12 sock.bind((UDP_IP, UDP_PORT))
13 sock.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, 1)
14
15 #connect with mysql server and create cursor
16 mariadb_connection = mariadb.connect(user=’pi’, password=’Team16ProjectClimber’,

↪→ host=’localhost’, database=’climbing’)
17 cursor = mariadb_connection.cursor(buffered=True)
18 print("connected to MariaDB server")
19
20 old_data = ""
21 i=0
22 while True:
23 data, addr = sock.recvfrom(1024)
24 #see if there is recieved data that isn’t a repeated packet
25 if data != old_data:
26 print(data)
27 print("duplicate number: " + str(i))
28 i=0
29 #parse packet
30 tag_id = data.splitlines()[1]
31 wristband_id = data.splitlines()[2]
32 timestamp = int(data.splitlines()[3] + data.splitlines()[4])
33
34 #add new tag to database
35 cursor.execute("SELECT * FROM tag WHERE tag_id=%s", (tag_id,))
36 if cursor.fetchone() == None:
37 cursor.execute("INSERT INTO tag (tag_id, login) VALUES(%s, 0)",

↪→ (tag_id,))
38 print(’new tag added’)
39 mariadb_connection.commit()
40
41 #check if login tag and assign wristband
42 cursor.execute("SELECT login FROM tag WHERE tag_id=%s", (tag_id,))
43 if cursor.fetchone()[0] == 1:
44 #add new wristband to database
45 cursor.execute("SELECT * FROM wristband WHERE wristband_id=%s",

↪→ (wristband_id,))
46 if cursor.fetchone() == None:
47 cursor.execute("INSERT INTO wristband (wristband_id, tag_id)

↪→ VALUES(%s, %s)", (wristband_id, tag_id,))
48 print(’new wristband added’)
49 mariadb_connection.commit()
50
51 else:
52 cursor.execute("UPDATE wristband SET tag_id=%s WHERE

↪→ wristband_id=%s", (tag_id, wristband_id,))
53 print(’updated wristband’)

53

Climber Timer Team 16

54 mariadb_connection.commit()
55
56 #check if login attempt is occurring
57 cursor.execute("SELECT user_connect FROM tag WHERE tag_id=%s", (tag_id,))
58 user_connect = cursor.fetchone()[0]
59 if user_connect != None:
60 cursor.execute("SELECT wristband_id FROM user WHERE

↪→ wristband_id=%s", (wristband_id,))
61 if cursor.fetchone() != None:
62 cursor.execute("UPDATE user SET wristband_id=NULL WHERE

↪→ wristband_id=%s", (wristband_id,))
63 print(’removed wristband’)
64 mariadb_connection.commit()
65 cursor.execute("UPDATE user SET wristband_id=%s WHERE user_id=%s",

↪→ (wristband_id, user_connect,))
66 mariadb_connection.commit()
67 print("wristband assigned")
68 else:
69 print("login failed")
70
71 #standard use
72 else:
73 cursor.execute("SELECT * FROM wristband WHERE wristband_id=%s",

↪→ (wristband_id,))
74 if cursor.fetchone() != None:
75 cursor.execute("SELECT user_id FROM user WHERE wristband_id=%s",

↪→ (wristband_id,))
76 if cursor.fetchone() != None:
77 cursor.execute("SELECT problem_number FROM problem WHERE

↪→ start_id=%s OR finish_id=%s", (tag_id, tag_id,))
78 if cursor.fetchone() != None:
79
80 #get user id
81 cursor.execute("SELECT user_id FROM user WHERE

↪→ wristband_id=%s", (wristband_id,))
82 user_id = cursor.fetchone()[0]
83
84 #get problem id if finish hold or end hold
85 cursor.execute("SELECT problem_number FROM problem WHERE

↪→ start_id=%s OR finish_id=%s", (tag_id, tag_id,))
86 problem_number = cursor.fetchone()[0]
87
88 #work out if it’s start hold or finish hold
89 cursor.execute("SELECT start_id FROM problem WHERE

↪→ problem_number=%s", (problem_number,))
90
91 #check if start hold
92 if cursor.fetchone()[0] == tag_id:
93
94 #check if user has tried problem before
95 cursor.execute("SELECT attempts FROM user_problem WHERE

↪→ user_id=%s AND problem_number=%s", (user_id, problem_number,))
96 if cursor.fetchone() == None:
97
98 #create new row for user and problem
99 cursor.execute("INSERT INTO user_problem (user_id,

↪→ problem_number, attempts, sends, fastest_send) VALUES(%s, %s, 1, 0, 0)",
↪→ (user_id, problem_number,))

100 mariadb_connection.commit()
101 print(’user attempting new problem’)
102

54

Climber Timer Team 16

103 #increment attempt counter
104 else:
105 cursor.execute("UPDATE user_problem SET attempts =

↪→ attempts + 1 WHERE user_id=%s AND problem_number=%s", (user_id,
↪→ problem_number,))

106 mariadb_connection.commit()
107 print(’attempts incremented’)
108
109 #update time and tag id in wristband
110 cursor.execute("UPDATE wristband SET tag_id=%s,

↪→ start_time=%s WHERE wristband_id=%s", (tag_id, timestamp, wristband_id,))
111 mariadb_connection.commit()
112
113 #increment sends (i.e. finish hold)
114 else:
115 #check wristband to see if it matches with the same

↪→ problem as start hold, if true then increment succeses
116 cursor.execute("SELECT finish_id FROM problem WHERE

↪→ start_id=(SELECT tag_id FROM wristband WHERE wristband_id=%s)",
↪→ (wristband_id,))

117 query = cursor.fetchone()
118 if query == None:
119 print("tag assignment error")
120
121 elif query[0] == tag_id:
122 cursor.execute("UPDATE user_problem SET sends =

↪→ sends + 1 WHERE user_id=%s AND problem_number=%s", (user_id,
↪→ problem_number,))

123 mariadb_connection.commit()
124 print("incremented sends")
125 cursor.execute("UPDATE wristband SET tag_id = NULL

↪→ WHERE wristband_id=%s", (wristband_id,))
126 mariadb_connection.commit()
127
128 #check if this is fastest clear
129 cursor.execute("SELECT start_time FROM wristband

↪→ WHERE wristband_id=%s", (wristband_id,))
130 clear_time = timestamp - cursor.fetchone()[0]
131 cursor.execute("SELECT fastest_send FROM

↪→ user_problem WHERE user_id=%s AND problem_number=%s", (user_id,
↪→ problem_number,))

132 best_time = cursor.fetchone()[0]
133 print(str(timestamp))
134 cursor.execute("SELECT start_time FROM wristband

↪→ WHERE wristband_id=%s", (wristband_id,))
135 print(cursor.fetchone()[0])
136 print("clear time: " + str(clear_time) + "

↪→ best_time: " + str(best_time))
137 if best_time > clear_time or best_time == 0:
138 cursor.execute("UPDATE user_problem SET

↪→ fastest_send=%s WHERE user_id=%s AND problem_number=%s", (clear_time,
↪→ user_id, problem_number,))

139 mariadb_connection.commit()
140 print("new best time!")
141 else:
142 print("Finish hold doesn’t match start hold")
143
144 else:
145 cursor.execute("UPDATE wristband SET tag_id=%s WHERE

↪→ wristband_id=%s", (tag_id, wristband_id,))
146 mariadb_connection.commit()

55

Climber Timer Team 16

147 print("tag not assigned to problem")
148
149 else:
150 cursor.execute("UPDATE wristband SET tag_id=%s WHERE

↪→ wristband_id=%s", (tag_id, wristband_id,))
151 mariadb_connection.commit()
152 print("wristband not assigned")
153
154 else:
155 print("wristband not registered in system")
156
157 old_data = data
158 mariadb_connection.commit()
159 else:
160 i=i+1
161 mariadb_connection.close()

56

Climber Timer Team 16

J UDP Receiver Tests

Test Database Setup String Input Expected Result Result

User login User ID in
user connect for a

login tag

Login ID
Wristband ID

timestamp

Wristband ID in user As
expected

New tag Tag ID not in tag Tag ID
Wristband ID

timestamp

Tag ID added to tag System
crash

New wristband Wristband ID not
in wristband

Login ID
Wristband ID

timestamp

Wristband ID added to
wristband

As
expected

User starts new
problem

User-problem pair
doesn’t exist in
user problem

Start ID
Wristband ID

timestamp

User problem pair added
to user problem with

attempts and fastest send
set to 1 and 0

respectively. start time
updates with timestamp

As
expected

User restarts
problem

Start ID in tag id
for wristband

Start ID
Wristband ID

timestamp

attempts for user-problem
pair increments and

start time updates with
current timestamp

As
expected

User finishes
problem slower
than best time

fastest send for
user-problem pair
set to -1. tag id

for wristband set
to start ID of

problem

Finish ID
Wristband ID

timestamp

sends increments As
expected

User finishes
problem faster
than best time

fastest send for
user-problem pair

set to 1. tag id
for wristband set

to start ID of
problem

Finish ID
Wristband ID

timestamp

sends increments and
fastest send set to 0

As
expected

User scans finish
tag different from
different problem
to previous start

tag

tag id set to 0 in
wristband

Finish ID
Wristband ID

timestamp

Nothing System
crash

User scans
unassigned tag

Tag ID removed
from problem

Tag ID
Wristband ID

timestamp

Nothing As
expected

User uses
unassigned
wristband

Wristband ID
removed from

user

Tag ID
Wristband ID

timestamp

Nothing As
expected

57

Climber Timer Team 16

K Website Images

K.1 Login Page

58

Climber Timer Team 16

K.2 Sign Up Page

59

Climber Timer Team 16

K.3 User Data Page

60

Climber Timer Team 16

K.4 Connect Wristband

61

Climber Timer Team 16

K.5 Problem Data Page

K.6 Settings Page

62

Climber Timer Team 16

L Website Test Table

Test Action Field Input(s) Expected Result Result

Login Entered correct
credentials

Username:
JSmith

Password:
testing123

Redirect to User Data
page and show JSmith as
the current user (admin)

As
expected

Sign Up Enter some
information and

submit

First Name:
Bert Second

Name: Jenkins
Username:
BertieBoy
Password:
bBoy123

Update User table with
new information

As
expected

More Info Press more info
next to a problem

NA Redirect to the Problem
Data page with only the
selected problem visible

As
expected

Connect wristband Scan login tag
with wristband

and enter
appropriate data

on site

Wristband
Number: 1

Update User table with
wristband number

As
expected

Search Enter a colour
and click search

Colour: Blue Show a list of problems
that all have blue as the

colour

As
expected

Add problem Enter valid
credentials and

press add

14 1 2 V4 Jim
Sterling Red

Fridge
2018-03-16
2018-04-16

Add problem to
Problem table

As
expected

Add wristband Scan a login tag
and enter a new

wristband number

New Wristband
Number: 7

Update Wristband
table with new wristband

number

As
expected

Add/Update Tag Scan a tag and
enter the new tag

number

Scanning
Wristband

Number: 1 New
Tag Number: 4

Update Tag table with
new tag number

As
expected

Add setter Enter new setter
names and click

add

First Name:
Bert Second

Name: Jenkins

Update Setter table
with new setter

As
expected

63

Climber Timer Team 16

M PHP Code

M.1 homepage.php

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2 <html>
3 <head>
4 <title>Climbing Logger - Log In</title>
5 <link rel="stylesheet" href="style.css">
6 </head>
7 <body>
8 <div id="pagetitle"><h1>Climbing Logger</h1></div>
9 <div id="climbingform">

10 <h2>Log In</h2>
11 <div id="forminputs">
12 <form action="#" method="post">
13 <p>Username:</p>
14 <?php //populate input box with previous value if it exists
15 if (array_key_exists("username", $_POST)) {
16 echo "<input type=\"text\" name=\"username\"

↪→ value=\"{$_POST["username"]}\">";
17 } else {
18 echo "<input type=\"text\" name=\"username\" value=\"\">";
19 }
20 ?>
21

22 <p>Password:</p>
23 <input type="password" name="password" value="">
24

25 <input type="submit" value=" Submit ">
26 </form>
27

28 Sign Up
29 </div>
30 <?php
31 session_start(); //open session variable
32 $_SESSION = array(); //initialise session to an empty array
33 //connect to mysql server on pi
34 $hostname = "localhost";
35 $username = "pi";
36 $password = "Team16ProjectClimber";
37 $db = "climbing";
38 $dbconnect = mysqli_connect($hostname,$username,$password,$db); //initiate

↪→ connection
39 if ($dbconnect->connect_error) { //output connection error if connection fails
40 die("Database connection failed: " . $dbconnect->connect_error);
41 }
42 if (!array_key_exists ("username", $_POST)) { //checks if user has attempted log in
43 } else {
44 if ($_POST["username"] == null) { //if username field is empty
45 $_POST = array();
46 echo "Incorrect username or password
";
47 } else {
48 $query = mysqli_query($dbconnect, "SELECT * FROM user where

↪→ username = ’".$_POST["username"]."’") or die (mysqli_error($dbconnect));
↪→ //query database to get password

49 $info = mysqli_fetch_array($query);
50
51 if ($info["password"] == $_POST["password"] && $info["username"]

↪→ == $_POST["username"]) { //redirects if login was correct

64

Climber Timer Team 16

52 $_SESSION = $_POST;
53 header("Location: userdata.php");
54 exit();
55 } else { //outputs login error if login was incorrect
56 $_POST = array();
57 echo "Incorrect username or password
";
58 }
59 }
60 }
61 ?>
62
Problem List
63 </body>
64 </html>

65

Climber Timer Team 16

M.2 signup.php

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2 <html>
3 <head>
4 <title>Climbing Logger - Sign Up</title>
5 <link rel="stylesheet" href="style.css" />
6 </head>
7 <body>
8 <div id="climbingform">
9
<h2>Sign Up</h2>

10 <div id="forminputs">
11 <form action="#" method="post">
12 <p>First Name:</p>
13 <?php //populate input box with previous value if it exists
14 if (array_key_exists("name_first", $_POST)) {
15 echo "<input type=\"text\" name=\"name_first\"

↪→ value=\"{$_POST["name_first"]}\">";
16 } else {
17 echo "<input type=\"text\" name=\"name_first\" value=\"\">";
18 }
19 ?>
20

21 <p>Last Name:</p>
22 <?php //populate input box with previous value if it exists
23 if (array_key_exists("name_first", $_POST)) {
24 echo "<input type=\"text\" name=\"name_last\"

↪→ value=\"{$_POST["name_last"]}\">";
25 } else {
26 echo "<input type=\"text\" name=\"name_last\" value=\"\">";
27 }
28 ?>
29

30 <p>Username:</p>
31 <?php //populate input box with previous value if it exists
32 if (array_key_exists("username", $_POST)) {
33 echo "<input type=\"text\" name=\"username\"

↪→ value=\"{$_POST["username"]}\">";
34 } else {
35 echo "<input type=\"text\" name=\"username\"value=\"\">";
36 }
37 ?>
38

39 <p>Password:</p>
40 <input type="password" name="password" value="">
41

42 <input type="submit" value=" Submit ">
43 </form>
44 </div>
45 </div>
46 <?php
47 session_start(); //open session variable
48 $_SESSION = array(); //initialise session to an empty array
49 //connect to mysql server on pi
50 $hostname = "localhost";
51 $username = "pi";
52 $password = "Team16ProjectClimber";
53 $db = "climbing";
54 $dbconnect=mysqli_connect($hostname,$username,$password,$db); //initiate connection
55 if ($dbconnect->connect_error) { //output connection error if connection fails

66

Climber Timer Team 16

56 die("Database connection failed: " . $dbconnect->connect_error);
57 }
58 if (array_key_exists ("username", $_POST) && array_key_exists ("name_first",

↪→ $_POST) && array_key_exists ("name_last", $_POST) && array_key_exists
↪→ ("password", $_POST)) { //check user logged in correctly

59 if ($_POST["username"] == null || $_POST["name_first"] == null ||
↪→ $_POST["name_last"] == null || $_POST["password"] == null) { //check fields
↪→ aren’t empty

60 //NOTE this prevents URL login bypass
61 $_POST = array();
62 echo "<div style=\"color:#db204e\">Please fill in all

↪→ fields</div>

";
63 } else {
64 $query = mysqli_query($dbconnect, "SELECT * FROM user where

↪→ username = ’{$_POST["username"]}’;") or die (mysqli_error($dbconnect));
↪→ //get user data from database

65 $user_info = mysqli_fetch_array($query);
66
67 if(is_array($user_info)) { //if username is already in use
68 $_POST["username"] = "";
69 echo "<div style=\"color:#db204e\">Username already

↪→ exists</div>

";
70 } else {
71 $query = mysqli_query($dbconnect, "INSERT INTO user

↪→ (username, name_first, name_last, password) values(’{$_POST["username"]}’,
↪→ ’{$_POST["name_first"]}’, ’{$_POST["name_last"]}’, ’{$_POST["password"]}’)")
↪→ or die (mysqli_error($dbconnect));

72 echo "<div style=\"color:#00932c\">Success!
<a
↪→ href=\"/homepage.php\">Login</div>
"; //creates user

73 }
74 }
75 } else {
76 echo "<div style=\"color:#ed0007\">Please fill in all

↪→ fields</div>

";
77 }
78 ?>
79 <h2>Or go to:</h2>

80 Homepage
81

82 Problem List
83

84 </body>
85 </html>

67

Climber Timer Team 16

M.3 userdata.php

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2 <html>
3 <head>
4 <title>Climbing Logger - User Data</title>
5 <link rel="stylesheet" href="style.css">
6 </head>
7 <body>
8

9 <?php

10 session_start(); //open session variable
11 //connect to mysql server on pi
12 $hostname = "localhost";
13 $username = "pi";
14 $password = "Team16ProjectClimber";
15 $db = "climbing";
16 $dbconnect = mysqli_connect($hostname,$username,$password,$db); //initiate

↪→ connection
17 if ($dbconnect->connect_error) { //output connection error if connection fails
18 die("Database connection failed: " . $dbconnect->connect_error);
19 } //check user is logged in
20 if (!array_key_exists("username", $_SESSION)) { //is user logged in
21 header("Location: homepage.php");
22 exit();
23 } else { //check user is logged in correctly
24 $query = mysqli_query($dbconnect, "SELECT * FROM user where username =

↪→ ’".$_SESSION["username"]."’;") or die (mysqli_error($dbconnect));
25 $user_data = mysqli_fetch_array($query);
26 if ($user_data["username"] != $_SESSION["username"] ||

↪→ $user_data["password"] != $_SESSION["password"]) {
27 header("Location: homepage.php");
28 exit();
29 } else {
30 $admin = "";
31 $admin_in = false; //set admin status to default (no)
32 if ($user_data["admin"] == 1) { //if user is an admin
33 $admin_in = true;
34 $admin = " (admin)";
35 }
36 echo "<center>Current User : " . $user_data["username"] . $admin .

↪→ "

"; //current user printout
37 $query = mysqli_query($dbconnect, "SELECT * FROM user_problem

↪→ where user_id = ’".$user_data["user_id"]."’;") or die
↪→ (mysqli_error($dbconnect));

38 //printout all user_problem data
39 ?>
40
41 <h2>User Data</h2>

42 <table>
43 <tr>
44 <td>User ID</td>
45 <td>Problem Number</td>
46 <td>Total Attempts</td>
47 <td>Total Sends</td>
48 <td>Fastest Send (s)</td>
49 <td>More Info</td>
50 </tr>
51 <?php //populate table with database data
52 while ($row = mysqli_fetch_array($query)) {

68

Climber Timer Team 16

53 echo
54 "<tr>
55 <td>{$row[’user_id’]}</td>
56 <td>{$row[’problem_number’]}</td>
57 <td>{$row[’attempts’]}</td>
58 <td>{$row[’sends’]}</td>
59 <td>{$row[’fastest_send’]}</td>
60 <td><a

↪→ href=’problemdata.php?pn={$row[’problem_number’]}’><center>+</td>
61 </tr>\n";
62 }
63 }
64 }?>
65 </table>
66

67 Problem List
68

69 <?php
70 if ($admin_in == true) { //settings tab for admins only
71 echo "Settings";
72 echo "

";
73 }?>
74 Connect Wristband
75

76 Logout
77

78 </body>
79 </html>

69

Climber Timer Team 16

M.4 connect.php

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2 <html>
3 <head>
4 <title>Climbing Logger - Connect</title>
5 <link rel="stylesheet" href="style.css"</link>
6 </head>
7 <body>
8 <div id="climbingform">
9 <h2>Connect to Wristband</h2>

10 <div id="forminputs">
11 <form action="/connect.php" method="post" id="connect_form">
12 <p>Wristband Number</p>
13 <?php //populate input box with previous value if it exists
14 if (array_key_exists("num", $_POST)) {
15 echo "<input type=\"text\" name=\"num\" value=\"{$_POST["num"]}\">";
16 } else {
17 echo "<input type=\"text\" name=\"num\" value=\"\">";
18 }?>
19

20 <button type="submit" id="button" form="connect_form"><div id="connect"> Connect

↪→ </div></button>
21 </form>
22 </div>
23 <script> //javascript to display countdown for wristband connect
24 var time = 5;
25 var counter = time;
26 function countdown(){
27 document.getElementById("button").disabled = true;
28 document.getElementById("connect").innerHTML = "Connect in..." + counter;
29 var timer = setInterval(function(){
30 if(counter > 1){
31 counter--;
32 document.getElementById("connect").innerHTML = "Connect

↪→ in..." + counter;
33 }
34 else{
35 counter = time;
36 clearInterval(timer);
37 document.getElementById("connect").innerHTML = " Connect ";
38 document.getElementById("button").disabled = false;
39 window.location.replace("/connectresult.php");
40 }
41 }, 1000);
42 }</script>
43 <?php
44 session_start(); //open session variable
45 //connect to mysql server on pi
46 $hostname = "localhost";
47 $username = "pi";
48 $password = "Team16ProjectClimber";
49 $db = "climbing";
50 $dbconnect = mysqli_connect($hostname,$username,$password,$db); //initiate

↪→ connection
51 if ($dbconnect->connect_error) { //output connection error if connection fails
52 die("Database connection failed: " . $dbconnect->connect_error);
53 }//perform correct user check (prevent URL bypass)
54 if (array_key_exists ("username", $_SESSION)){
55 if ($_SESSION["username"] == null) {

70

Climber Timer Team 16

56 header("Location: homepage.php");
57 exit();
58 } else {
59 $query = mysqli_query($dbconnect, "SELECT * FROM user where

↪→ username = ’{$_SESSION["username"]}’") or die (mysqli_error($dbconnect));
60 $user_info = mysqli_fetch_array($query);
61 if ($user_info["password"] == $_SESSION["password"] &&

↪→ $user_info["username"] == $_SESSION["username"]) {
62 if (array_key_exists("num", $_POST)) { //if user has input

↪→ a wristband number to connect to
63 $query = mysqli_query($dbconnect, "UPDATE tag SET

↪→ user_connect = ’{$user_info["user_id"]}’ WHERE login = 1") or die
↪→ (mysqli_error($dbconnect)); //set temp data

64 echo "<script> countdown(); </script>"; //start
↪→ countdown script then redirects to connectresult

65 $query = mysqli_query($dbconnect, "SELECT * FROM
↪→ wristband WHERE wristband_number = ’{$_POST["num"]}’") or die
↪→ (mysqli_error($dbconnect));

66 $wristband_info = mysqli_fetch_array($query);
↪→ //get wristband data

67 if(!is_array($wristband_info)) { //if wristband
↪→ exists

68 $query = mysqli_query($dbconnect, "UPDATE
↪→ tag SET user_connect = NULL WHERE login = 1") or die
↪→ (mysqli_error($dbconnect));

69 header("Location:
↪→ connect.php?status=no_w");

70 exit(); //remove temp data
71 }
72 $_SESSION["wristband_id"] =

↪→ $wristband_info["wristband_id"];
73 }
74 } else { //redirect i user isn’t logged in correctly
75 header("Location: homepage.php");
76 exit();
77 }
78 }
79 } else { //redirect if user isn’t logged in
80 header("Location: homepage.php");
81 exit();
82 }if(array_key_exists("status", $_GET)){
83 $status = $_GET["status"];
84 if($status == "success"){ //if connection was successful
85 echo "<h2> Success! </h2>";
86 }
87 else if($status == "no_w"){ //if connection failed
88 echo "<h2> Wristband is not in database! </h2>";
89 }
90 else if($status == "fail"){ //other error
91 echo "<h2> Oops...Something went wrong. Please try again! </h2>";
92 } }?>
93

94 Problem List
95

96 User Page
97

98 Logout
99

100 </body>
101 </html>

71

Climber Timer Team 16

M.5 connectresult.php

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2 <html>
3 <head>
4 <title>Climbing Logger - Connect Result</title>
5 <link rel="stylesheet" href="style.css"</link>
6 </head>
7 <body>
8 <?php
9 session_start(); //open session variable

10 //connect to mysql server on pi
11 $hostname = "localhost";
12 $username = "pi";
13 $password = "Team16ProjectClimber";
14 $db = "climbing";
15 $dbconnect = mysqli_connect($hostname,$username,$password,$db); //initiate

↪→ connection
16 if ($dbconnect->connect_error) { //output connection error if connection fails
17 die("Database connection failed: " . $dbconnect->connect_error);
18 }if(empty($_SESSION)){ //if session is not populated
19 header("Location: homepage.php"); //eject user
20 exit();
21 } else {
22 $query = mysqli_query($dbconnect, "UPDATE tag SET user_connect = NULL

↪→ WHERE login = 1;") or die (mysqli_error($dbconnect)); //remove temporary data
23 $query = mysqli_query($dbconnect, "SELECT * FROM user WHERE username =

↪→ ’{$_SESSION["username"]}’;") or die (mysqli_error($dbconnect));
24 $user_info = mysqli_fetch_array($query); //get user data
25 if ($user_info["wristband_id"] == $_SESSION["wristband_id"]){ //if

↪→ wristband was scanned
26 header("Location: connect.php?status=success");
27 } else {
28 header("Location: connect.php?status=fail");
29 }
30 }?>
31 </body>
32 </html>

72

Climber Timer Team 16

M.6 problemdata.php

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2 <html>
3 <head>
4 <title>Climbing Logger - Problem Data</title>
5 <link rel="stylesheet" href="style.css">
6 </head>
7 <body>
8 <?php
9 session_start(); //open session variable

10 //connect to mysql server on pi
11 $hostname = "localhost";
12 $username = "pi";
13 $password = "Team16ProjectClimber";
14 $db = "climbing";
15 $dbconnect = mysqli_connect($hostname,$username,$password,$db); //initiate

↪→ connection
16 if ($dbconnect->connect_error) { //output connection error if connection fails
17 die("Database connection failed: " . $dbconnect->connect_error);
18 }$user_in = false; //set default value showing user is not logged in
19 $admin_in = false; //set default value showing admin is not logged in
20 if (array_key_exists("username", $_SESSION)) { //check if user is logged in
21 $query = mysqli_query($dbconnect, "SELECT * FROM user where username =

↪→ ’".$_SESSION["username"]."’;") or die (mysqli_error($dbconnect));
22 $user_data = mysqli_fetch_array($query);
23 if ($user_data["username"] == $_SESSION["username"] &&

↪→ $user_data["password"] == $_SESSION["password"]) {
24 $user_in = true; //set user is logged in to true
25 $admin = "";
26 if ($user_data["admin"] == 1) {
27 $admin_column = "<td>Delete

↪→ Problem</td>";
28 $admin_in = true; //set admin is logged in to true
29 $admin = " (admin)";
30 } else {
31 $admin_column = "";
32 }
33 echo "
<center>Current User : " . $user_data["username"] .

↪→ $admin . "
"; //admin variable adds "(admin)" to the current user printout
34 } else {
35 $admin_column = "";
36 }
37 } else {
38 $admin_column = "";
39 }echo "
<h2>Problem Data</h2>";
40 if ($admin_in == true) { //print out add problem form for admins only
41 echo "<form action=\"problemdata.php\" method=\"post\">
";
42 echo "Problem Number ";
43 if (array_key_exists("add_problem_number", $_POST)) { //populate input box

↪→ with previous value if it exists
44 echo "<input type=\"number\" name=\"add_problem_number\"

↪→ value=\"{$_POST["add_problem_number"]}\">";
45 } else {
46 echo "<input type=\"number\" name=\"add_problem_number\"

↪→ value=\"\">";
47 }
48 echo " || Start Tag Number ";
49 if (array_key_exists("start_tag", $_POST)) { //populate input box with

↪→ previous value if it exists

73

Climber Timer Team 16

50 echo "<input type=\"number\" name=\"start_tag\"
↪→ value=\"{$_POST["start_tag"]}\">";

51 } else {
52 echo "<input type=\"number\" name=\"start_tag\" value=\"\">";
53 }
54 echo " || Finish Tag Number ";
55 if (array_key_exists("finish_tag", $_POST)) { //populate input box with

↪→ previous value if it exists
56 echo "<input type=\"number\" name=\"finish_tag\"

↪→ value=\"{$_POST["finish_tag"]}\">";
57 } else {
58 echo "<input type=\"number\" name=\"finish_tag\" value=\"\">";
59 }
60 echo " || Grade ";
61 echo "<select name=\"add_grade\">
62 <option value=\"empty\">Select Grade</option>
63 <option value=0>V0</option>
64 <option value=1>V1</option>
65 <option value=2>V2</option>
66 <option value=3>V3</option>
67 <option value=4>V4</option>
68 <option value=5>V5</option>
69 <option value=6>V6</option>
70 <option value=7>V7</option>
71 <option value=8>V8</option>
72 </select>
";
73 echo "Setter First Name ";
74 if (array_key_exists("add_setter_first", $_POST)) { //populate input box

↪→ with previous value if it exists
75 echo "<input type=\"text\" name=\"add_setter_first\"

↪→ value=\"{$_POST["add_setter_first"]}\">";
76 } else {
77 echo "<input type=\"text\" name=\"add_setter_first\" value=\"\">";
78 }
79 echo " || Setter Last Name ";
80 if (array_key_exists("add_setter_last", $_POST)) { //populate input box

↪→ with previous value if it exists
81 echo "<input type=\"text\" name=\"add_setter_last\"

↪→ value=\"{$_POST["add_setter_last"]}\">";
82 } else {
83 echo "<input type=\"text\" name=\"add_setter_last\" value=\"\">";
84 }
85 echo " || Colour ";
86 if (array_key_exists("add_colour", $_POST)) { //populate input box with

↪→ previous value if it exists
87 echo "<input type=\"text\" name=\"add_colour\"

↪→ value=\"{$_POST["add_colour"]}\">";
88 } else {
89 echo "<input type=\"text\" name=\"add_colour\" value=\"\">";
90 }
91 echo " || Zone
92 <select name=\"add_zone\">
93 <option value=\"empty\">Select Zone</option>
94 <option value=\"Oven\">Oven</option>
95 <option value=\"Fridge\">Fridge</option>
96 <option value=\"Mezz\">Mezz</option>
97 </select>";
98 echo "
Set date (yyyy-mm-dd) ";
99 if (array_key_exists("set_date", $_POST)) { //populate input box with

↪→ previous value if it exists

74

Climber Timer Team 16

100 echo "<input type=\"text\" name=\"set_date\"
↪→ value=\"{$_POST["set_date"]}\">";

101 } else {
102 echo "<input type=\"text\" name=\"set_date\" value=\"\">";
103 }
104 echo " || Strip date (yyyy-mm-dd) ";
105 if (array_key_exists("strip_date", $_POST)) { //populate input box with

↪→ previous value if it exists
106 echo "<input type=\"text\" name=\"strip_date\"

↪→ value=\"{$_POST["strip_date"]}\">";
107 } else {
108 echo "<input type=\"text\" name=\"strip_date\" value=\"\">";
109 }
110 echo "

<input type=\"submit\" value=\" Add \">";
111 echo "</form>";
112 }?>
113 <form action="problemdata.php" method="post">
114

115 Problem Number
116 <input type="text" name="problem_number" value="">
117 || Grade
118 <select name="grade">
119 <option value="all">All</option>
120 <option value=0>V0</option>
121 <option value=1>V1</option>
122 <option value=2>V2</option>
123 <option value=3>V3</option>
124 <option value=4>V4</option>
125 <option value=5>V5</option>
126 <option value=6>V6</option>
127 <option value=7>V7</option>
128 <option value=8>V8</option>
129 </select>
130 || Setter
131 <input type="text" name="setter" value="">
132 || Colour
133 <input type="text" name="colour" value="">
134 || Zone
135 <select name="zone">
136 <option value="all">All</option>
137 <option value="oven">Oven</option>
138 <option value="fridge">Fridge</option>
139 <option value="mezz">Mezz</option>
140 </select>
141

142 <input type="submit" value=" Search ">
143 </form>
144

145 <table>
146 <tr>
147 <td>Problem Number</td>
148 <td>V Grade</td>
149 <td>Setter</td>
150 <td>Colour</td>
151 <td>Zone</td>
152 <td>Set Date</td>
153 <td>Strip Date</td>
154 <?php echo $admin_column ?>
155 </tr>
156 <?php //following 2 functions are used to obtain the URL extension
157 function url_origin($s, $use_forwarded_host = false) {

75

Climber Timer Team 16

158 $ssl = (! empty($s[’HTTPS’]) && $s[’HTTPS’] == ’on’);
159 $sp = strtolower($s[’SERVER_PROTOCOL’]);
160 $protocol = substr($sp, 0, strpos($sp, ’/’)) . (($ssl) ? ’s’ : ’’);
161 $port = $s[’SERVER_PORT’];
162 $port = ((! $ssl && $port==’80’) || ($ssl && $port==’443’)) ? ’’

↪→ : ’:’.$port;
163 $host = ($use_forwarded_host && isset($s[’HTTP_X_FORWARDED_HOST’])

↪→) ? $s[’HTTP_X_FORWARDED_HOST’] : (isset($s[’HTTP_HOST’]) ?
↪→ $s[’HTTP_HOST’] : null);

164 $host = isset($host) ? $host : $s[’SERVER_NAME’] . $port;
165 return $protocol . ’://’ . $host;
166 }function full_url($s, $use_forwarded_host = false) {
167 return url_origin($s, $use_forwarded_host) . $s[’REQUEST_URI’];
168 }function isRealDate($date) { //function checks date is in the correct format and

↪→ valid
169 if (false === strtotime($date)) {
170 return false;
171 }
172 list($year, $month, $day) = explode(’-’, $date);
173 return checkdate($month, $day, $year);
174 }$absolute_url = full_url($_SERVER); //gets full URL
175 //the following nested if mountain checks in the right order that every input has

↪→ a valid input and outputs the appropriate error message if not
176 //it also checks with database values to ensure the input data is allowed
177 if (array_key_exists("add_grade", $_POST)) {
178 if ($_POST["add_problem_number"] != "") {
179 $query = mysqli_query($dbconnect, "SELECT * from problem where

↪→ problem_number = {$_POST["add_problem_number"]};") or die
↪→ (mysqli_error($dbconnect));

180 $problem_number_query = mysqli_fetch_array($query);
181 if (!is_array($problem_number_query)) {
182 if ($_POST["start_tag"] != "" && $_POST["finish_tag"] !=

↪→ "" && $_POST["start_tag"] != $_POST["finish_tag"]) {
183 $query = mysqli_query($dbconnect, "SELECT * from

↪→ tag where tag_number = {$_POST["start_tag"]};") or die
↪→ (mysqli_error($dbconnect));

184 $start_id = mysqli_fetch_array($query);
185 $query = mysqli_query($dbconnect, "SELECT * from

↪→ tag where tag_number = {$_POST["finish_tag"]};") or die
↪→ (mysqli_error($dbconnect));

186 $finish_id = mysqli_fetch_array($query);
187 if (is_array($start_id) && is_array($finish_id)) {
188 $query = mysqli_query($dbconnect, "SELECT

↪→ * from problem where start_id = ’".$start_id[0]."’ or finish_id =
↪→ ’".$start_id[0]."’

189 or start_id = ’".$finish_id[0]."’ or
↪→ finish_id = ’".$finish_id[0]."’;") or die (mysqli_error($dbconnect));

190 $check_if_tag_in_use =
↪→ mysqli_fetch_array($query);

191 if (!is_array($check_if_tag_in_use)) {
192 if ($_POST["add_grade"] !=

↪→ "empty") {
193 if (!preg_match(’[\W]’,

↪→ $_POST["add_setter_first"])) {
194 if

↪→ (!preg_match(’[\W]’, $_POST["add_setter_last"])) {
195 $query =

↪→ mysqli_query($dbconnect, "SELECT setter_id FROM setter where name_first =
↪→ ’".$_POST["add_setter_first"]."’ and name_last =
↪→ ’".$_POST["add_setter_last"]."’;") or die (mysqli_error($dbconnect));

76

Climber Timer Team 16

196 $setter_id_for_add
↪→ = mysqli_fetch_array($query);

197 if
↪→ ($setter_id_for_add != "") {

198 if
↪→ (!preg_match(’/[ˆa-z\s-]/i’,$_POST["add_colour"])) {

199 if
↪→ ($_POST["add_zone"] != "empty") {

200 if
↪→ (isRealDate($_POST["set_date"]) == true) {

201 if
↪→ (isRealDate($_POST["strip_date"]) == true) {

202 if
↪→ ($_POST["strip_date"] > date("Y-m-d")) {

203 $query =
↪→ mysqli_query($dbconnect, "insert into problem (problem_number, start_id,
↪→ finish_id, grade, setter_id, colour, zone, set_date, strip_date)
↪→ values({$_POST["problem_number"]}, \"{$start_id[0]}\", \"{$finish_id[0]}\",
↪→ {$_POST["add_grade"]}, {$setter_id_for_add[0]}, \"{$_POST["add_colour"]}\",
↪→ \"{$_POST["add_zone"]}\", \"{$_POST["set_date"]}\",
↪→ \"{$_POST["strip_date"]}\");") or die (mysqli_error($dbconnect));

204 }
↪→ else {

205 echo
↪→ "Strip date is in the past";

206 }
207 }

↪→ else {
208 echo

↪→ "Strip date doesn’t exist";
209 }
210 }

↪→ else {
211 echo

↪→ "Set date doesn’t exist";
212 }
213 }

↪→ else {
214 echo

↪→ "No zone selected";
215 }
216 }

↪→ else {
217 echo

↪→ "Invalid colour";
218 }
219 } else {
220 echo

↪→ "Setter doesn’t exist";
221 }
222 } else {
223 echo

↪→ "Invalid setter second name";
224 }
225 } else {
226 echo "Invalid

↪→ setter first name";
227 }
228 } else {
229 echo "No grade selected";
230 }

77

Climber Timer Team 16

231 } else {
232 echo "Tag number(s) in use";
233 }
234 } else {
235 echo "Tag values(s) don’t exist";
236 }
237 } else {
238 echo "Invalid tag values";
239 }
240 } else {
241 echo "Problem number in use";
242 }
243 } else {
244 echo "Invalid problem_number";
245 }
246 }if (array_key_exists("grade", $_POST)) { //sets statement concatonators to empty

↪→ strings
247 $and1 = "";
248 $and2 = "";
249 $and3 = "";
250 $and4 = "";
251 //following block contructs a query string based on the input parameters
252 //this means that if a user only inputs one search parameter the query can

↪→ still happen
253 //the string concatonators are updated accordingly to append new

↪→ parameters to the total string
254 if ($_POST["problem_number"] == "") {
255 $search_problem_number = "";
256 } else {
257 $search_problem_number = "problem_number =

↪→ {$_POST["problem_number"]}";
258 }
259 if ($_POST["grade"] == "all") {
260 $search_grade = "";
261 } else {
262 $search_grade = "grade = {$_POST["grade"]}";
263 if ($_POST["problem_number"] != "") {
264 $and1 = "and";
265 }
266 }
267 if ($_POST["setter"] == "") {
268 $search_setter = "";
269 } else {
270 if ($_POST["grade"] != "all") {
271 $and2 = "and";
272 }
273 $names = explode(’ ’, $_POST["setter"]);
274 $name1 = $names[0];
275 $name2 = "";
276 if (array_key_exists(1, $names)) { //splits name into first and

↪→ last
277 $name2 = $names[1];
278 $two_names1 = "and name_last = ’".$names[1]."’";
279 $two_names2 = "and name_first = ’".$names[1]."’";
280 $name2 = $names[1];
281 } else {
282 $two_names1 = "";
283 $two_names2 = "";
284 }
285 $query = mysqli_query($dbconnect, "SELECT setter_id FROM setter

↪→ where name_first = ’".$names[0]."’ {$two_names1} or name_last =

78

Climber Timer Team 16

↪→ ’".$names[0]."’ {$two_names2};") or die (mysqli_error($dbconnect));
286 $search_setter_id = mysqli_fetch_array($query); //gets the setter

↪→ id for future query
287 $search_setter = "setter_id = ’".$search_setter_id[0]."’";
288 }
289 if ($_POST["colour"] == "") {
290 $search_colour = "";
291 } else {
292 if ($_POST["setter"] != "") {
293 $and3 = "and";
294 }
295 $search_colour = "colour = \"{$_POST["colour"]}\"";
296 }
297 if ($_POST["zone"] == "all") {
298 $search_zone = "";
299 } else {
300 if ($_POST["colour"] != "") {
301 $and4 = "and";
302 }
303 $search_zone = "zone = \"{$_POST["zone"]}\"";
304 }
305 if ($_POST["problem_number"] != "" || $_POST["grade"] != "all" ||

↪→ $_POST["setter"] != "" || $_POST["colour"] != "" || $_POST["zone"] != "all")
↪→ { //check all input fields aren’t blank

306 $search = "where {$search_problem_number} {$and1} {$search_grade}
↪→ {$and2} {$search_setter} {$and3} {$search_colour} {$and4} {$search_zone}";

307 } else {
308 $search = "";
309 }
310 } else {
311 $search = "";
312 }if ($absolute_url == "problemdata.php") {
313 $query = mysqli_query($dbconnect, "SELECT * FROM problem {$search};") or

↪→ die (mysqli_error($dbconnect));
314 } else {
315 //following block obtains URL extension to determine search or delete
316 $p_d_split = Explode(’?’, $absolute_url);
317 $p_d_all = $p_d_split[count($p_d_split) - 1];
318 $p_d = substr($p_d_all, -strlen($p_d_all), 1);
319 $parts = Explode(’=’, $absolute_url);
320 $id = $parts[count($parts) - 1];
321 if ($p_d == ’d’ && $admin_in == true) { //if user is admin and delete is

↪→ true
322 $del = mysqli_query($dbconnect, "delete from problem where

↪→ problem_number = {$id};") or die (mysqli_error($dbconnect));
323 $query = mysqli_query($dbconnect, "SELECT * FROM problem

↪→ {$search};") or die (mysqli_error($dbconnect));
324 } else {
325 if ($p_d == ’p_d’) {
326 $query = mysqli_query($dbconnect, "SELECT * FROM problem

↪→ where problem_number = {$id};") or die (mysqli_error($dbconnect)); //perform
↪→ search by problem_number

327 } else { //if URL is neither search or delete
328 $query = mysqli_query($dbconnect, "SELECT * FROM problem

↪→ {$search};") or die (mysqli_error($dbconnect));
329 }
330 }
331 }while ($row = mysqli_fetch_array($query)) { //keep outputting until full table

↪→ has been outputted
332 $query1 = mysqli_query($dbconnect, "SELECT * FROM setter where setter_id =

↪→ {$row["setter_id"]};") or die (mysqli_error($dbconnect));

79

Climber Timer Team 16

333 $setter_name = mysqli_fetch_array($query1);
334 if ($admin_in == True) {
335 $admin_del = "<td><a

↪→ href=’problemdata.php?did={$row[’problem_number’]}’
↪→ style=\"text-decoration:none\"><center>☒</td>";

336 } else {
337 $admin_del = "";
338 }
339 echo
340 "<tr>
341 <td>{$row[’problem_number’]}</td>
342 <td>{$row[’grade’]}</td>
343 <td>{$setter_name[’name_first’]} {$setter_name[’name_last’]}</td>
344 <td>{$row[’colour’]}</td>
345 <td>{$row[’zone’]}</td>
346 <td>{$row[’set_date’]}</td>
347 <td>{$row[’strip_date’]}</td>
348 {$admin_del}
349 </tr>\n";
350 }//show site navigation conditionally
351 echo "</table>
";
352 $in_or_out = "in";
353 if ($user_in == true) {
354 echo "User Page

";
355 if ($admin_in == true) {
356 echo "Settings

";
357 }
358 $in_or_out = "out";
359 }echo "Log{$in_or_out}
";
360 ?>
361 </body>
362 </html>

80

Climber Timer Team 16

M.7 settings.php

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2 <html>
3 <head>
4 <title>Climbing Logger - Settings</title>
5 <link rel="stylesheet" href="style.css">
6 </head>
7 <body>
8 <?php
9 session_start();

10 //connect to mysql server on pi
11 $hostname = "localhost";
12 $username = "pi";
13 $password = "Team16ProjectClimber";
14 $db = "climbing";
15 $dbconnect = mysqli_connect($hostname,$username,$password,$db); //initiate

↪→ connection
16 if ($dbconnect->connect_error) { //output connection error if connection fails
17 die("Database connection failed: " . $dbconnect->connect_error);
18 }
19 if (!array_key_exists("username", $_SESSION)) { //if session variable is populated
20 header("Location: homepage.php"); //eject user
21 exit();
22 } else {
23 $query = mysqli_query($dbconnect, "SELECT * FROM user where username =

↪→ ’".$_SESSION["username"]."’;") or die (mysqli_error($dbconnect));
24 $user_data = mysqli_fetch_array($query); //get user data
25
26 if ($user_data["username"] != $_SESSION["username"] ||

↪→ $user_data["password"] != $_SESSION["password"]) { //if user is not logged in
27 header("Location: homepage.php");
28 exit();
29 } else {
30 if ($user_data["admin"] != 1) { //if user is not an admin
31 header("Location: homepage.php");
32 exit();
33 } else {
34 echo "
<center>Current User : " .

↪→ $user_data["username"] . " (admin)

";
35 }
36 }
37 }?>
38 Add Wristband (Scan login tag)
39

40 <form action="settings.php" method="post">
41 New Wristband Number
42 <?php //populate input box with previous value if it exists
43 if (array_key_exists("new_wristband_number", $_POST)) {
44 echo "<input type=\"text\" name=\"new_wristband_number\"

↪→ value=\"{$_POST["new_wristband_number"]}\"> ";
45 } else {
46 echo "<input type=\"text\" name=\"new_wristband_number\" value=\"\"> ";
47 }?>
48 <input type="submit" value=" Add ">
49 </form>
50 <?php
51 if (array_key_exists("new_wristband_number", $_POST)) { //if add wristband was

↪→ submitted
52 if ($_POST["new_wristband_number"] == "") { //if input is not blank

81

Climber Timer Team 16

53 echo "Incomplete data

";
54 } else {
55 $query = mysqli_query($dbconnect, "SELECT * FROM tag where login =

↪→ 1;") or die (mysqli_error($dbconnect));
56 $login_tag = mysqli_fetch_array($query); //get tag data
57 $query = mysqli_query($dbconnect, "SELECT * FROM wristband where

↪→ tag_id = ’".$login_tag["tag_id"]."’;") or die (mysqli_error($dbconnect));
58 $wristband_data = mysqli_fetch_array($query); //get wristband data
59 if (!is_array($wristband_data)) { //if wristband was not scanned
60 echo "Login tag not scanned

";
61 } else {
62 $query = mysqli_query($dbconnect, "update wristband set

↪→ wristband_number = ’".$_POST["new_wristband_number"]."’ where tag_id =
↪→ ’".$login_tag_id."’;") or die (mysqli_error($dbconnect)); //update wristband
↪→ number

63 $query = mysqli_query($dbconnect, "update wristband set
↪→ tag_id = null where wristband_number =
↪→ ’".$_POST["new_wristband_number"]."’;") or die (mysqli_error($dbconnect));
↪→ //delete temp tag data

64 echo "Wristband added

";
65 }
66 }
67 } else {
68 echo "

";
69 }?>
70 Add/Update Tag
71

72 <form action="settings.php" method="post">
73 Scanning Wristband Number
74 <?php //populate input box with previous value if it exists
75 if (array_key_exists("scan_wristband_number", $_POST)) {
76 echo "<input type=\"text\" name=\"scan_wristband_number\"

↪→ value=\"{$_POST["scan_wristband_number"]}\"> ";
77 } else {
78 echo "<input type=\"text\" name=\"scan_wristband_number\" value=\"\"> ";
79 }?>
80 || New Tag Number
81 <?php //populate input box with previous value if it exists
82 if (array_key_exists("new_tag_number", $_POST)) {
83 echo "<input type=\"text\" name=\"new_tag_number\"

↪→ value=\"{$_POST["new_tag_number"]}\"> ";
84 } else {
85 echo "<input type=\"text\" name=\"new_tag_number\" value=\"\"> ";
86 }?>
87 Login <input type="checkbox" name="login" value=1>
88 <input type="submit" value=" Add ">
89 </form>
90 <?php
91 if (array_key_exists("new_tag_number", $_POST)) { //if add tag was submitted
92 if ($_POST["scan_wristband_number"] == "" || $_POST["new_tag_number"] ==

↪→ "") { //if input is not blank
93 echo "Incomplete data

";
94 } else {
95 $query = mysqli_query($dbconnect, "SELECT * FROM wristband where

↪→ wristband_number = ’".$_POST["scan_wristband_number"]."’;") or die
↪→ (mysqli_error($dbconnect));

96 $get_tag_id = mysqli_fetch_array($query); //get wristband data
97 if (!is_array($get_tag_id)) { //if data doesn’t exist
98 echo "Wristband doesn’t exist

";
99 } else {

100 if ($get_tag_id["tag_id"] == "") { //if temp data is empty

82

Climber Timer Team 16

101 echo "No tag scanned

";
102 } else {
103 $query = mysqli_query($dbconnect, "select * from

↪→ tag where tag_number = ’".$_POST["new_tag_number"]."’;") or die
↪→ (mysqli_error($dbconnect));

104 $tag_number_query = mysqli_fetch_array($query);
↪→ //get tag data

105 if (is_array($tag_number_query)) { //if tag value
↪→ is taken

106 echo "Tag number is already in
↪→ use

";

107 } else {
108 $query = mysqli_query($dbconnect, "select

↪→ * from tag where tag_id = ’".$get_tag_id["tag_id"]."’;") or die
↪→ (mysqli_error($dbconnect));

109 $tag_data = mysqli_fetch_array($query);
110 if (!is_array($tag_data)) { //if tag

↪→ number is not in use
111 $query = mysqli_query($dbconnect,

↪→ "insert into tag (tag_id, tag_number) values(’".$get_tag_id["tag_id"]."’,
↪→ ’".$_POST["new_tag_number"]."’);") or die (mysqli_error($dbconnect));

112 echo "Tag number added";
113 } else { //if tag number is in use

↪→ (reallocate
114 $query = mysqli_query($dbconnect,

↪→ "update tag set tag_number = ’".$_POST["new_tag_number"]."’ where tag_id =
↪→ ’".$get_tag_id["tag_id"]."’;") or die (mysqli_error($dbconnect));

115 echo "Tag number updated";
116 }
117 if (isset($_POST["login"])) { //if user

↪→ wants a login tag
118 $query = mysqli_query($dbconnect,

↪→ "select * from tag where login = 1;") or die (mysqli_error($dbconnect));
119 $login_tag_query =

↪→ mysqli_fetch_array($query);
120 $query = mysqli_query($dbconnect,

↪→ "update tag set login = 0;") or die (mysqli_error($dbconnect));
121 $query = mysqli_query($dbconnect,

↪→ "update tag set login = 1 where tag_id = ’".$get_tag_id["tag_id"]."’;") or
↪→ die (mysqli_error($dbconnect));

122 echo "

";
123 }
124 $query = mysqli_query($dbconnect, "update

↪→ wristband set tag_id = null where tag_id = ’".$get_tag_id["tag_id"]."’;") or
↪→ die (mysqli_error($dbconnect)); //remove temp data

125 }
126 }
127 }
128 }
129 } else {
130 echo "

";
131 }?>
132 Add Setter
133

134 <form action="settings.php" method="post">
135 First Name
136 <?php //populate input box with previous value if it exists
137 if (array_key_exists("add_setter_first_name", $_POST)) {
138 echo "<input type=\"text\" name=\"add_setter_first_name\"

↪→ value=\"{$_POST["add_setter_first_name"]}\"> ";
139 } else {

83

Climber Timer Team 16

140 echo "<input type=\"text\" name=\"add_setter_first_name\" value=\"\"> ";
141 }?>
142 || Last Name
143 <?php //populate input box with previous value if it exists
144 if (array_key_exists("add_setter_last_name", $_POST)) {
145 echo "<input type=\"text\" name=\"add_setter_last_name\"

↪→ value=\"{$_POST["add_setter_last_name"]}\"> ";
146 } else {
147 echo "<input type=\"text\" name=\"add_setter_last_name\" value=\"\"> ";
148 }?>
149 <input type="submit" value=" Add ">
150 </form>
151 <?php
152 if (array_key_exists("add_setter_first_name", $_POST)) { //if add setter was

↪→ submitted
153 if ($_POST["add_setter_first_name"] == "" ||

↪→ $_POST["add_setter_last_name"] == "") { //if input is blank
154 echo "Incomplete data

";
155 } else {
156 $query = mysqli_query($dbconnect, "SELECT * FROM setter where

↪→ name_first = ’".$_POST["add_setter_first_name"]."’ and name_last =
↪→ ’".$_POST["add_setter_last_name"]."’;") or die (mysqli_error($dbconnect));

157 $add_setter_query = mysqli_fetch_array($query);
158 if (is_array($add_setter_query)) { //if setter already exists
159 echo "Setter already exists

";
160 } else { //add setter
161 $query = mysqli_query($dbconnect, "insert into setter

↪→ (name_first, name_last) values(’".$_POST["add_setter_first_name"]."’,
↪→ ’".$_POST["add_setter_last_name"]."’);") or die (mysqli_error($dbconnect));

162 echo "Setter added

";
163 }
164 }
165 } else {
166 echo "

";
167 }?>
168 Problem List
169

170 User Page
171

172 Logout
173

174 </body>
175 </html>

84

